Nombre de documents


CV de Vincent Koziarz

Pré-publication, Document de travail8 documents

  • Donald Cartwright, Vincent Koziarz, Sai-Kee Yeung. On the Cartwright-Steger surface. 2017. <hal-01429836>
  • Vincent Koziarz, Julien Maubon. Maximal representations of uniform complex hyperbolic lattices. 35 pages. Final version before publication. 2016. <hal-01166954v2>
  • Vincent Koziarz, Julien Maubon. On the equidistribution of totally geodesic submanifolds in compact locally symmetric spaces and application to boundedness results for negative curves and exceptional divisors. 2015. <hal-01266101>
  • Bruno Klingler, Vincent Koziarz, Julien Maubon. On the second cohomology of Kähler groups. 21 pages. Exposition improved. Final version. 2010. <hal-00472587v2>
  • Vincent Koziarz. Extensions with estimates of cohomology classes. to appear in Manuscripta Mathematica. 2010. <hal-00495007>
  • Vincent Koziarz, Ngaiming Mok. Nonexistence of holomorphic submersions between complex unit balls equivariant with respect to a lattice and their generalizations. 2008. <hal-00273313>
  • Vincent Koziarz, Julien Maubon. The Toledo invariant on smooth varieties of general type. 19 pages. 2008. <hal-00334523>
  • Vincent Koziarz, Julien Maubon. Harmonic maps and representations of non-uniform lattices of PU(m,1). v2: the case of lattices of PU(1,1) has been rewritten and is now treated in full generality + ot.. 2004. <hal-00135144>

Article dans une revue3 documents

  • Frédéric Campana, Vincent Koziarz, Mihai Păun. Numerical character of the effectivity of adjoint line bundles. Annales de l'Institut Fourier, Association des Annales de l'Institut Fourier, 2012, 62 (1), pp.107-119. <10.5802/aif.2701>. <hal-01286484>
  • Bruno Klingler, Vincent Koziarz, Julien Maubon. On the Second Cohomology of Kähler Groups. Geometric And Functional Analysis, Springer Verlag, 2011, 21 (2), <10.1007/s00039-011-0114-y>. <hal-01275541>
  • Vincent Koziarz, Julien Maubon. Representations of complex hyperbolic lattices into rank 2 classical Lie groups of Hermitian type. Geometriae Dedicata, Springer Verlag, 2008, pp.85-111. <hal-00135135v2>