Skip to Main content
Number of documents

14

Curriculum vitae


Sophie Meuret

 

Birth: 19/10/1989, Paris, France                                                   E-mail: sophie.meuret@cemes.fr          

ORCID: 0000-0001-8511-9972                                                              Web: www.cemes.fr

Date of birth: 19/10/1989                                                             twitt: @meuret_sophie

Phone: +33 660154658 

 

EDUCATION

2012-2015         PhD in Physics, University Paris Saclay (France)

                            Thesis: Intensity interferometry experiment in a scanning transmission electron microscope

                            Laboratory of Solid state physics , University: Paris Saclay (Orsay, France)

                            Advisor: Mathieu Kociak

                            Keywords: STEM, single-photon emitter, g(2) in CL, GaN-based heterostructure

 

2011-2012         Master in nanoscience and nanotechnology

                            Engineering School: Phelma  (Grenoble, France)

2011-2012         Master in Condensed Matter Physics

                            University: Joseph Fourier (Grenoble, France)

 

CURRENT POSITION

Dec 2018 –         CNRS Permanent Researcher (Chargé de Recherche)

                            Laboratory: CEMES-CNRS (Toulouse France)

 

POSTDOCTORAL POSITION

2016 – 2018      Post-doctorate – Albert Polman’s group

                            Laboratory: AMOLF (Amsterdam, The Netherlands)

                            Keywords: Time-resolved SEM, photoemission, ultra-fast blanker, TR-CL, g(2) in SEM

 

PUBLICATIONS and PRESENTATIONS

·        18 peer-reviewed publications, including 1 PRL, 1 Nature Chemistry, 1 Nature Com., 2 Nano Lett., 4 ACS Photonics, 5 as first author

·        7 peer-reviewed publications without PhD supervisor, including 1 Nature Chem., 1 Nature Com, 1 Nano Lett., 1 ACS Photonics, 2 as first author.

·        11 invited talks at conferences and workshops

 

FELLOWSHIPS AND AWARDS

2012 2015      PhD Scholarship, DGA-CNRS Scholarship

 

2017                    Thesis Prize – Prix Favard of the French Microscopy Society

2014                    EPS Poster Prize – CMD25 Conference (European Conference)

 

 

SUPERVISION OF GRADUATE STUDENTS

2019 – 21021   1 PhD Students/3 Master Student

                            Laboratory: CEMES (Toulouse, France)

2016 2018                                                      2 PhD students/1 Master Student/ 2 Bachelor students

Laboratory: AMOLF (Amsterdam, The Netherlands)

2012 – 2015       3 Master Students

                             Laboratory: LPS (Orsay, France)

 

TEACHING

2014                   Practical Classes Electron Microscopy – University Paris Saclay (Orsay, France)

2014                   Tutorial geometrical optics, University Paris Saclay (Orsay, France)

 

ORGANISATION OF SCIENTIFIC MEETINGS

2019-2021         Co-chair of the future QEM School (2021) in Quantitative Electron Microscopy

2019-2021         Member of Nano-Optics and Plasmonics Subcommittee of the OSA Conference on Lasers and Electro-Optics (CLEO)

2021-2022         Sub-Committee Chair of the conference on Lasers and Electro-Optics (CLEO)

 

MAJOR COLLABORATIONS

2012 – Pres.       Luiz Tizei and Mathieu Kociak, Lab: LPS (Orsay, France): Cathodoluminescence (CL)

2012 – Pres.       Bruno Daudin – Lab: INAC/CEA (Grenoble, France): GaN nanowire growth

2016 – Pres.       Toon Coenen and Albert Polman, Lab: AMOLF (Amsterdam, The Netherlands): TR-CL

2019 – Pres.       Benjamin Damilano, Lab: CRHEA (Sophia Antipolis, France) – GaN nanowire growth

2018 – Pres.       Martina Schmid, University of Duisburg-Essen (Essen, Germany)

2014 – Pres.       Javier Garcia de Abajo – ICFO (Casteldelfe, Spain) – Theory coherent excitation of electron

 

Research Summary

 

My research activities focus on the optical properties of nano-objects, which I studied by combining an experimental, instrumental and theoretical approach. More specifically, I am interested in the study of nano-optics materials: quantum wells, point defects in diamond or boron nitride, plasmonic and semiconductor nanostructures. The guideline of my research is based on understanding and exploiting the interaction between electrons and matter. To do this, I studied the optical properties of materials with cathodoluminescent (CL), using different types of scanning electron microscopes, with various characteristics ranging from nanometer spatial resolution to picosecond temporal resolution. My main contribution is the discovery of photons bunching by CL, i. e. under irradiation of an electron beam, semiconductors emits light by packets of photons. This phenomenon is a fantastic tool for understanding electron-matter interactions, measuring the lifetimes associated with excited states at the nanoscale, and measure the efficiency of excitation. The IMAGINE project is, therefore, the logic next step of my research activity.

My research as a young researcher in CEMES, is the development of new cathodoluminescence-based spectroscopy for nano-optics using the unique microscopes available on site. This technique and its application to nano-optics are entirely new in the host institution and reacquire PhDs and Post-docs to help me built this new line of research. This ERC will allow me to start my research project in the best possible conditions, with the human resources and equipment needed for this ambitious project.

 

As a Ph.D. student (2012-2015), I made several significant contributions to electron microscopy for nano-optics, including:

·        The characterization of a UV single-photon emitter in h-BN using Cathodoluminescence (Nano Lett. 2017). Impact: Discovery of a new bright UV quantum emitter. (cited 90 times)

·        The discovery of a photon bunching effect in electron microscopy (PRL 2015) Impact: A new method to investigate the electron-matter interaction, and the evidence of a phenomenon never observed before.

·        Application of the bunching effect to lifetime measurement with a continuous beam (ACS Photonics 2016). Impact:  Lifetime with the highest spatial resolution (<5 nm), no need for a pulse beam.

 

As a post-doc (2016-2018), I made substantial contributions in Time-Resolved scanning electron microscopy

·        I develop two time-resolved scanning electron microscope one based on the ultra-fast blanking technology (PRB 2017) and the other on the photoemission effect (Ultramicroscopy 2019). Impact: Thorough comparison between the two technologies (brightness, current, resolution, accessible information).

·        Cathodoluminescence autocorrelation measurement with a pulsed beam (PRB 2017). Impact: Increasing of the photon bunching effect. Revealing differences and similarities between SEM and STEM excitation mechanismes.

·        I demonstrate the measurement of electron excitation efficiency with the autocorrelation function (Nano Lett. 2018). Impact: First measurement of electron excitation probability and therefore volume information without prior knowledge of the probed structure.

·        I was responsible for the technological transfer of the autocorrelation measurement and lifetime measurement to the DELMIC company (CL set-up for SEM: https://www.delmic.com/sparc-cathodoluminescence-sem).

·        I built with M. Solà Garcia (Ph.D.) the first pump-probe luminescence experiment in SEM and applied it to the excitation of NV center in diamond. (arxiv: arXiv:1910.04524). Impact: Proof of principle on another electron-based spectroscopy. We resolved a longlasting debate on the effect of fast-electrons on diamond NV centers.

 

Since starting in CEMES/CNRS (Dec 2018-):

·        Comparison of cathodoluminescence and Electron Holography on GaN nanostructures and CIGS solar cell (Grant: ANR JCJC). Goal: I want to correlate the intrinsic electric field of AlN/GaN nanowire with their luminescence spectrum.

·        First proof of principle of time-resolved cathodoluminescence study in an UTEM. This first experiment paved the way to a complet optical caracterisation of nanoscale emitter within a Ultrasfast TEM.

·        In addition to time-resolved cathodoluminescence I started several research projects using electron energy gain spectroscopy. We use a parabolic mirror to photo-excite the sample with a 2 μm spot size. Goal: Gain electron energy spectroscopy: study of the near-field of metallic particle with unbeatable resolution.

 

Five representative publications:

1.       S. Meuret, LHG Tizei, F Houdellier, S Weber, Y Auad, M Tencé, H-C Chang, M Kociak, A Arbouet, Time-Resolved Cathodoluminescence in an Ultrafast Transmission Electron Microscope, App. Phys. Letters, 119, 062106 (2021) (Featured article)

2.       S.Meuret, T. Coenen, M. Solà-Garcia, E. Kieft, H. Zeijlemaker, M. Latzel, S. Christiansen, S.Y. Woo, Y-H. Ra, Z. MI et A. Polman, Complementary cathodoluminescence lifetime imaging configurations in scanning electron microscopy, Ultramicroscopy 197 28-38 (2019)

3.       S.Meuret, T. Coenen, S.Y. Woo, Y.-H. Ra, Z. Mi et A. Polman, Nanoscale relative emission efficiency mapping using cathodoluminescence g(2) imaging, Nano Letters, 18 2288-2293 (2018)

4.       S. Meuret, L. Tizei, T. Auzelle, R. Songmuang, B. Daudin, B. Gayral et M. Kociak, Lifetime measurement well below the optical diffraction limit, ACS Photonics 3, 1157-1163 (2016)

5.       S. Meuret, L. Tizei, T. Cazimajou, R. Bourrellier, H.C. Chang, F. Treussart et M. Kociak, Photon Bunching in Cathodoluminescence, Phys. Rev. Lett 114, 197401 (2015)

6.       R. Bourrellier, S. Meuret, A. Taran, O. Stéphan, M. Kociak, L.H.G. Tizei, A. Zobelli, Bright UV single-photon emission at point defect in h-BN, Nano Lett. 16, 4317-4321 (2016)

 

Invited talks at international conferences:

·      Metanano 21 (Online)

09/2021

·      META 2021 (Online)

07/2021

·      Material Research Society (Online)

12/2020

·      Microscopy and Microanalysis 2020 (Online)

08/2020

·      Medinano 2020 (Online)

09/2020

·      Australian Microscopy Congress (Cambera – Australia)

02/2020

·      Workshop semiconductors (Clermont Ferrant – France)

07/2019

·      10th CCEM Anniversary (Mac Master University – Canada)

11/2018

·      Women in STEM (Oldenburg – Germany)

10/2018

·      International Microscopy Conference (Sydney – Australia)

09/2018

·      Workshop CL for semiconductors (Berlin – Germany)

04/2018

·      Workshop electron beam spectroscopy for nano-photonics (Sitges – Spain)          

10/2017

·      MEDINANO 2019 (Amalfi – Italy)           

08/2017

·      Integrative Electronics (KAUST – Saudi Arabia)         

01/2017

·      IWUMD 2016 (Beijing – China)

07/2016

 

 

 


Journal articles11 documents

  • Arnaud Arbouet, Florent Houdellier, Giuseppe Mario Caruso, Sophie Meuret, Mathieu Kociak, et al.. Observer la matière à l’échelle du nanomètre et de la femtoseconde : la microscopie électronique en transmission ultrarapide. Photoniques, EDP Sciences, 2020, pp.26 - 30. ⟨10.1051/photon/202010226⟩. ⟨hal-03030625⟩
  • Nicolò Maccaferri, Sophie Meuret, Nikolay Kornienko, Deep Jariwala. Speeding up Nanoscience and Nanotechnology with Ultrafast Plasmonics. Nano Letters, American Chemical Society, 2020, pp.5593 - 5596. ⟨10.1021/acs.nanolett.0c02452⟩. ⟨hal-03030569⟩
  • Mathieu Kociak, Luiz Galvão Tizei, Sophie Meuret, Hugo Lourenço-Martins, Odile Stephan. Spectromicroscopies électroniques : sonder les propriétés optiques de nanomatériaux avec des électrons rapides. Photoniques, EDP Sciences, 2020, pp.39 - 43. ⟨10.1051/photon/202010239⟩. ⟨hal-03030634⟩
  • Hugo Lourenco-Martins, Mathieu Kociak, Sophie Meuret, François Treussart, Yih Hong Lee, et al.. Probing Plasmon-NV 0 Coupling at the Nanometer Scale with Photons and Fast Electrons. ACS photonics, American Chemical Society,, 2017, 5 (2), pp.324-328. ⟨10.1021/acsphotonics.7b01093⟩. ⟨hal-02352554⟩
  • Romain Bourrellier, Sophie Meuret, Anna Tararan, Odile Stephan, Mathieu Kociak, et al.. Bright UV Single Photon Emission at Point Defects in h -BN. Nano Letters, American Chemical Society, 2016, 16 (7), pp.4317-4321. ⟨10.1021/acs.nanolett.6b01368⟩. ⟨hal-02059626⟩
  • Naohiko Kawasaki, Sophie Meuret, Raphaël Weil, Hugo Lourenco-Martins, Odile Stephan, et al.. Extinction and Scattering Properties of High-Order Surface Plasmon Modes in Silver Nanoparticles Probed by Combined Spatially Resolved Electron Energy Loss Spectroscopy and Cathodoluminescence. ACS photonics, American Chemical Society,, 2016, 3 (9), pp.1654-1661. ⟨10.1021/acsphotonics.6b00257⟩. ⟨hal-02059630⟩
  • Xin Zhang, Hugo Lourenco-Martins, Sophie Meuret, Mathieu Kociak, Benedikt Haas, et al.. InGaN nanowires with high InN molar fraction: growth, structural and optical properties. Nanotechnology, Institute of Physics, 2016, 27 (19), pp.195704. ⟨10.1088/0957-4484/27/19/195704⟩. ⟨cea-01851934⟩
  • Sophie Meuret, Luiz Tizei, Thomas Auzelle, R. Songmuang, Bruno Daudin, et al.. Lifetime Measurements Well below the Optical Diffraction Limit. ACS photonics, American Chemical Society,, 2016, 3 (7), pp.1157-1163. ⟨10.1021/acsphotonics.6b00212⟩. ⟨hal-01981358⟩
  • S. Meuret, L. h. g. Tizei, T. Cazimajou, R. Bourrellier, H. c. Chang, et al.. Photon Bunching in Cathodoluminescence. Physical Review Letters, American Physical Society, 2015, 114 (19), ⟨10.1103/PhysRevLett.114.197401⟩. ⟨hal-02059627⟩
  • L. Tizei, S. Meuret, K. March, K. Hestroffer, T. Auzelle, et al.. A polarity-driven nanometric luminescence asymmetry in AlN/GaN heterostructures. Applied Physics Letters, American Institute of Physics, 2014, 105 (14), pp.143106. ⟨10.1063/1.4897408⟩. ⟨hal-02157158⟩
  • Gabriel Tourbot, Catherine Bougerol, Frank Glas, Luiz Fernando Zagonel, Z. Mahfoud, et al.. Growth mechanism and properties of InGaN insertions in GaN nanowires. Nanotechnology, Institute of Physics, 2012, 23, pp.135703. ⟨10.1088/0957-4484/23/13/135703⟩. ⟨hal-00788827⟩

Book sections2 documents

Theses1 document

  • Sophie Meuret. Expérience de Hanbury Brown et Twiss dans un microscope électronique à transmission à balayage : sa physique et ses applications. Materials Science [cond-mat.mtrl-sci]. Université Paris Saclay (COmUE), 2015. English. ⟨NNT : 2015SACLS112⟩. ⟨tel-01281402⟩