Nombre de documents

16

Sonia Fliss


Pour en savoir plus, se rendre sur mon Site personnel


Article dans une revue12 documents

  • Vahan Baronian, Anne-Sophie Bonnet-Ben Dhia, Sonia Fliss, Antoine Tonnoir. Iterative methods for scattering problems in isotropic or anisotropic elastic waveguides. Wave Motion, Elsevier, 2016. <hal-01164794v3>
  • Anne-Sophie Bonnet-Ben Dhia, Sonia Fliss, Christophe Hazard, Antoine Tonnoir. A Rellich type theorem for the Helmholtz equation in a conical domain. Comptes Rendus Mathématique, Elsevier Masson, 2015, <10.1016/j.crma.2015.10.015>. <hal-01160242>
  • Sonia Fliss, Patrick Joly. Solutions of the time-harmonic wave equation in periodic waveguides : asymptotic behaviour and radiation condition. Archive for Rational Mechanics and Analysis, Springer Verlag, 2015, pp.10.1007/s00205-015-0897-3. <hal-01086033v2>
  • Laurent Bourgeois, Sonia Fliss. On the identification of defects in a periodic waveguide from far field data. Inverse Problems, IOP Publishing, 2014, 30 (9), <10.1088/0266-5611/30/9/095004>. <hal-00914674v2>
  • Sonia Fliss, Dirk Klindworth, Kersten Schmidt. Robin-to-Robin transparent boundary conditions for the computation of guided modes in photonic crystal wave-guides. BIT Numerical Mathematics, Springer Verlag, 2014, 55 (1), pp.35. <hal-01113869>
  • Dirk Klindworth, Kersten Schmidt, Sonia Fliss. An hp-finite element approximation of guided modes in photonic crystal waveguides using transparent boundary conditions. Computer and mathematics with applications, Elsevier, 2013. <hal-00937767>
  • Christophe Besse, Julien Coatleven, Sonia Fliss, Ingrid Lacroix-Violet, Karim Ramdani. Transparent boundary conditions for locally perturbed infinite hexagonal periodic media.. Communications in Mathematical Sciences, International Press, 2013, 11 (4), pp.907-938. <hal-00698916>
  • Sonia Fliss. A Dirichlet-to-Neumann approach for the exact computation of guided modes in photonic crystal waveguides. SIAM Journal on Scientific Computing, Society for Industrial and Applied Mathematics, 2013, 35 (2), pp.B438 - B461. <10.1137/12086697X>. <hal-00937675>
  • Sonia Fliss, Patrick Joly. Wave propagation in locally perturbed periodic media (case with absorption): Numerical aspects. Journal of Computational Physics, Elsevier, 2012, 231 (4), pp.1244-1271. <10.1016/j.jcp.2011.10.007>. <hal-00849566>
  • Sonia Fliss, Eric Cassan, Damien Bernier. Computation of light refraction at the surface of a photonic crystal using DtN approach. Journal of the Optical Society of America B, Optical Society of America, 2010, 27 (7), pp.1492-1503. <10.1364/josab.27.001492>. <hal-00873060>
  • Sonia Fliss, Patrick Joly. Exact boundary conditions for time-harmonic wave propagation in locally perturbed periodic media. Applied Numerical Mathematics, Elsevier, 2009, 59 (9), pp.2155-2178. <10.1016/j.apnum.2008.12.013>. <hal-00873067>
  • Patrick Joly, Jing-Rebecca Li, Sonia Fliss. Exact boundary conditions for periodic waveguides containing a local perturbation. Communications in Computational Physics, Global Science Press, 2006, 1 (6), pp.945-973. <hal-00977852>

Pré-publication, Document de travail2 documents

  • Patrick Ciarlet, Sonia Fliss, Christian Stohrer. On the Approximation of Electromagnetic Fields by Edge Finite Elements. Part 2: A Heterogeneous Multiscale Method for Maxwell's equations. 2016. <hal-01364782v2>
  • Bérangère Delourme, Sonia Fliss, Patrick Joly, Elizaveta Vasilevskaya. Trapped modes in thin and infinite ladder like domains: existence and asymptotic analysis. 2016. <hal-01287127>

Rapport1 document

  • Bérangère Delourme, Sonia Fliss, Patrick Joly, Elizaveta Vasilevskaya. Trapped modes in thin and infinite ladder like domains: existence and asymptotic analysis. [Research Report] RR-8882, (CNRS-ENSTA Paristech-INRIA, Université Paris-Saclay); LAGA, Université Paris 13. 2016. <hal-01287023>

Thèse1 document

  • Sonia Fliss. Analyse mathématique et numérique de problèmes de propagation des ondes dans des milieux périodiques infinis localement perturbés. Mathématiques [math]. Ecole Polytechnique X, 2009. Français. <pastel-00005464>