Skip to Main content

Social networks

    Researcher identifiers

    Number of documents

    21

    Redouane Lguensat


    Ronan Fablet   

    Journal articles5 documents

    • Hugo Frezat, Guillaume Balarac, Julien Le Sommer, Ronan Fablet, Redouane Lguensat. Physical invariance in neural networks for subgrid-scale scalar flux modeling. Physical Review Fluids, American Physical Society, 2021, 6 (2), ⟨10.1103/PhysRevFluids.6.024607⟩. ⟨hal-03084215v2⟩
    • Redouane Lguensat, Phi Huynh Viet, Miao Sun, Ge Chen, Tian Fenglin, et al.. Data-driven Interpolation of Sea Level Anomalies using Analog Data Assimilation. Remote Sensing, MDPI, 2019, ⟨10.3390/rs11070858⟩. ⟨hal-01609851⟩
    • Ronan Fablet, Phi Viet, Redouane Lguensat, Pierre-Henri Horrein, Bertrand Chapron. Spatio-Temporal Interpolation of Cloudy SST Fields Using Conditional Analog Data Assimilation. Remote Sensing, MDPI, 2018, 10 (2), ⟨10.3390/rs10020310⟩. ⟨hal-01757755⟩
    • Ronan Fablet, Phi Huynh Viet, Redouane Lguensat. Data-driven Models for the Spatio-Temporal Interpolation of satellite-derived SST Fields. IEEE Transactions on Computational Imaging, IEEE, 2017, pp.647 - 657. ⟨10.1109/TCI.2017.2749184⟩. ⟨hal-01656178⟩
    • Redouane Lguensat, Pierre Tandeo, Pierre Ailliot, Manuel Pulido, Ronan Fablet. The Analog Data Assimilation. Monthly Weather Review, American Meteorological Society, 2017, 145 (10), pp.4093 - 4107. ⟨10.1175/MWR-D-16-0441.1⟩. ⟨hal-01609141⟩

    Conference papers13 documents

    • Redouane Lguensat, Ronan Fablet, Julien Le Sommer, Sammy Metref, Emmanuel Cosme, et al.. Filtering Internal tides from wide-swath altimeter data using Convolutional Neural Networks.. IGARSS 2020: IEEE International Geoscience and Remote Sensing Symposium, Sep 2020, Waikoloa, United States. ⟨10.1109/IGARSS39084.2020.9323531⟩. ⟨hal-02941320⟩
    • Redouane Lguensat, Julien Le Sommer, Sammy Metref, Emmanuel Cosme, Ronan Fablet. Learning Generalized Quasi-Geostrophic Models Using Deep Neural Numerical Models. NeurIPS 2019 : 33rd Conference on Neural Information Processing Systems, Dec 2019, Vancouver, Canada. ⟨hal-02366600⟩
    • Redouane Lguensat, Julien Le Sommer, Sammy Metref, Emmanuel Cosme, Ronan Fablet. Inferring hidden equations using Quasi-Geostrophic theory guided machine learning. EGU 2019 : General Assembly 2019 of the European Geosciences Union, 2019, Vienna, Austria. pp.2019 - 15250. ⟨hal-02285699⟩
    • Redouane Lguensat, Miao Sun, Ronan Fablet, Evan Mason, Pierre Tandeo, et al.. EddyNet: A Deep Neural Network For Pixel-Wise Classification of Oceanic Eddies. International Geoscience and Remote Sensing Symposium (IGARSS 2018), Jul 2018, Valence, Spain. pp.1764-1767, ⟨10.1109/IGARSS.2018.8518411⟩. ⟨hal-01929509⟩
    • Redouane Lguensat, Miao Sun, Ge Chen, Fenglin Tian, Ronan Fablet. Spatio-Temporal interpolation of altimeter-derived SSH fields using Analog Data Assimilation: A Case-Study In The South China Sea. IGARSS 2017 : IEEE International Geoscience and Remote Sensing Symposium, Jul 2017, Fort Worth, United States. ⟨10.1109/IGARSS.2017.8127625⟩. ⟨hal-01799854⟩
    • Ronan Fablet, Phi Huynh Viet, Redouane Lguensat, Bertrand Chapron. Data-driven assimilation of irregularly-sampled image time series. ICIP 2017 : IEEE International Conference on Image Processing, Sep 2017, Beijing, China. ⟨10.1109/ICIP.2017.8297094⟩. ⟨hal-01757749⟩
    • Ronan Fablet, Redouane Lguensat, Phi Huynh Viet, Pierre Ailliot, Bertrand Chapron, et al.. Analog assimilation for high-dimensional geophysical dynamics. DSE 2017 : Workshop on Data Science and Environment, Jul 2017, Brest, France. ⟨hal-01586349⟩
    • Ronan Fablet, Phi Huynh Viet, Redouane Lguensat, Bertrand Chapron. Exploiting ocean observation and simulation big data to improve satellite-derived geophysical products: Analog strategies. BiDS'17: Big Data from Space Conference , Nov 2017, Toulouse, France. ⟨hal-01801014⟩
    • Redouane Lguensat, Pierre Tandeo, Pierre Ailliot, Manuel Pulido, Ronan Fablet. Toward data-driven methods in geophysics: the Analog Data Assimilation. EGU 2017 : 19th EGU General Assembly, Apr 2017, Vienne, Austria. ⟨hal-01609890⟩
    • Redouane Lguensat, Ronan Fablet, Pierre Ailliot, Pierre Tandeo. An Exemplar-based Hidden Markov Model framework for nonlinear state-space models. EUSIPCO 2016 : European Signal Processing Conference, Aug 2016, Budapest, Hungary. pp.1 - 5, ⟨10.1109/EUSIPCO.2016.7760667⟩. ⟨hal-01444213⟩
    • Redouane Lguensat, Pierre Tandeo, Ronan Fablet, Pierre Ailliot. Non-parametric Ensemble Kalman methods for the inpainting of noisy dynamic textures. ICIP 2015 : IEEE International Conference on Image Processing, Sep 2015, Québec City, Canada. pp.2488-2492, ⟨10.1109/ICIP.2015.7351615⟩. ⟨hal-01271173⟩
    • Pierre Tandeo, Pierre Ailliot, Bertrand Chapron, Redouane Lguensat, Ronan Fablet. The analog data assimilation: application to 20 years of altimetric data. CI 2015 : 5th International Workshop on Climate Informatics, Sep 2015, Boulder, United States. pp.1 - 2, ⟨10.13140/RG.2.1.4030.5681⟩. ⟨hal-01356222⟩
    • Redouane Lguensat, Pierre Tandeo, Ronan Fablet, René Garello. Spatio-temporal interpolation of Sea Surface Temperature using high resolution remote sensing data. OCEANS 2014 - St John's : MTS/IEEE international conference, Sep 2014, St. John'S, Canada. pp.1 - 4, ⟨10.1109/OCEANS.2014.7002988⟩. ⟨hal-01188863⟩

    Poster communications1 document

    • Redouane Lguensat, Pierre Tandeo, Pierre Ailliot, Ronan Fablet, Bertrand Chapron. Using archived datasets for missing data interpolation in ocean remote sensing observation series. OCEANS 2016 - Shangai : MTS/IEEE international conference, Apr 2016, Shanghai, China. IEEE/MTS, pp.1 - 6, ⟨10.1109/OCEANSAP.2016.7485433⟩. ⟨hal-01355266⟩

    Preprints, Working Papers, ...2 documents

    • Redouane Lguensat, Ronan Fablet, Julien Le Sommer, Sammy Metref, Emmanuel Cosme, et al.. Filtering Internal Tides From Wide-Swath Altimeter Data Using Convolutional Neural Networks. 2020. ⟨hal-03084229⟩
    • Redouane Lguensat, Julien Le Sommer, Sammy Metref, Emmanuel Cosme, Ronan Fablet. Learning Generalized Quasi-Geostrophic Models Using Deep Neural Numerical Models. 2020. ⟨hal-03084230⟩