Nombre de documents

9

CV de Pierre Halmagrand


Communication dans un congrès8 documents

  • Ali Assaf, Guillaume Burel, Raphal Cauderlier, David Delahaye, Gilles Dowek, et al.. Expressing theories in the λΠ-calculus modulo theory and in the Dedukti system. 22nd International Conference on Types for Proofs and Programs, TYPES 2016, May 2016, Novi SAd, Serbia. <hal-01441751>
  • Pierre Halmagrand. Soundly Proving B Method Formulae Using Typed Sequent Calculus. Augusto Sampaio; Farn Wang. 13th International Colloquium on Theoretical Aspects of Computing (ICTAC), Oct 2016, Taipei, Taiwan. Springer International Publishing, Theoretical Aspects of Computing – ICTAC 2016, 9965, pp 196-213, 2016, Lecture Notes in Computer Science. <http://cc.ee.ntu.edu.tw/~ictac2016/>. <10.1007/978-3-319-46750-4_12>. <hal-01342849>
  • Guillaume Bury, David Delahaye, Damien Doligez, Pierre Halmagrand, Olivier Hermant. Automated Deduction in the B Set Theory using Typed Proof Search and Deduction Modulo. LPAR 20 : 20th International Conference on Logic for Programming, Artificial Intelligence and Reasoning, Nov 2015, Suva, Fiji. <hal-01204701v2>
  • Guillaume Bury, Raphaël Cauderlier, Pierre Halmagrand. Implementing Polymorphism in Zenon. 11th International Workshop on the Implementation of Logics (IWIL), Nov 2015, Suva, Fiji. 11th International Workshop on the Implementation of Logics (IWIL), 2015, <http://www.eprover.org/EVENTS/IWIL-2015.html>. <hal-01243593>
  • Raphaël Cauderlier, Pierre Halmagrand. Checking Zenon Modulo Proofs in Dedukti. Fourth Workshop on Proof eXchange for Theorem Proving (PxTP), Aug 2015, Berlin, Germany. 2015, <http://pxtp15.lri.fr/>. <hal-01171360>
  • Pierre Halmagrand. Using Deduction Modulo in Set Theory. SETS14, 1st International Workshop about Sets and Tools, Jun 2014, Toulouse, France. SETS14, 1st International Workshop about Sets and Tools, 2014, Toulouse, France, EasyChair., pp.12, 2014, <http://sets2014.cnam.fr/>. <hal-01100512>
  • David Delahaye, Damien Doligez, Frédéric Gilbert, Pierre Halmagrand, Olivier Hermant. Zenon Modulo: When Achilles Outruns the Tortoise using Deduction Modulo. Ken McMillan and Aart Middeldorp and Andrei Voronkov. LPAR - Logic for Programming Artificial Intelligence and Reasoning - 2013, Dec 2013, Stellenbosch, South Africa. Springer, 8312, pp.274-290, 2013, LNCS; Logic for Programming, Artificial Intelligence, and Reasoning - 19th International Conference, LPAR-19, Stellenbosch, South Africa, December 14-19, 2013. Proceedings. <10.1007/978-3-642-45221-5_20>. <hal-00909784>
  • David Delahaye, Damien Doligez, Frédéric Gilbert, Pierre Halmagrand, Olivier Hermant. Proof Certification in Zenon Modulo: When Achilles Uses Deduction Modulo to Outrun the Tortoise with Shorter Steps. Stephan Schulz and Geoff Sutcliffe and Boris Konev. IWIL - 10th International Workshop on the Implementation of Logics - 2013, Dec 2013, Stellenbosch, South Africa. EasyChair, 2013. <hal-00909688>

Thèse1 document

  • Pierre Halmagrand. Automated Deduction and Proof Certification for the B Method. Logic in Computer Science [cs.LO]. Conservatoire National Des Arts et Métiers, Paris, 2016. English. <tel-01420460v2>