Skip to Main content
Number of documents

11

Publications


Journal articles7 documents

  • Elisha Falbel, Antonin Guilloux, Pierre Will. Hilbert metric without convexity. Journal of Geometric Analysis, 2020, Gennadi Henkin: In Memoriam, 30, pp.2865-2896. ⟨10.1007/s12220-020-00426-x⟩. ⟨hal-01768400⟩
  • Antonin Guilloux, Pierre Will. On SL(3,C)-representations of the Whitehead link group. Geometriae Dedicata, Springer Verlag, 2019, 202, pp.81-101. ⟨10.1007/s10711-018-0404-8⟩. ⟨hal-01370289⟩
  • Julien Paupert, Pierre Will. Real reflections, commutators and cross-ratios in complex hyperbolic space. Groups, Geometry, and Dynamics, European Mathematical Society, 2017, 11 (1), pp.311-352. ⟨hal-00916997⟩
  • Julien Paupert, Pierre Will. Involution and commutator length for complex hyperbolic isometries. The Michigan Mathematical Journal, Michigan Mathematical Journal, 2017, 66 (4), pp.699-744. ⟨10.1307/mmj/1501812020⟩. ⟨hal-02296968⟩
  • John R. Parker, Pierre Will. A complex hyperbolic Riley slice. Geometry and Topology, Mathematical Sciences Publishers, 2017, 21 (6), pp.3391 - 3451. ⟨10.2140/gt.2017.21.3391⟩. ⟨hal-01613535⟩
  • Pierre Will. Bending Fuschsian representations of fundamental groups of cusped surfaces in $\mathrm{PU}(2,1)$. Journal of Differential Geometry, International Press, 2012, 90 (3), pp.473 - 520. ⟨10.4310/jdg/1335273392⟩. ⟨hal-01613482⟩
  • Julien Marché, Pierre Will. Configurations of flags and representations of surface groups in complex hyperbolic geometry. Geom. Dedicata, 2012, 156, pp.49-70. ⟨hal-00843249⟩

Book sections2 documents

  • Pierre Will. Two-generator groups acting on the complex hyperbolic plane.. Handbook of Teichmüller Theory. Volume VI, 27, EMS, 2016, IRMA Lectures in mathematics and theoretical physics 978-3-03719-161-3. ⟨hal-01613529⟩
  • John R. Parker, Pierre Will. Complex hyperbolic free groups with many parabolic elements.. Geometry, groups and dynamics. , 639, AMS, pp.327-348, 2015, Contemporary Mathematics, 978-0-8218-9882-6. ⟨hal-00918321⟩

Theses1 document

  • Pierre Will. Groupes libres, groupes triangulaires et tore épointé dans PU(2,1). Mathématiques [math]. Université Pierre et Marie Curie - Paris VI, 2006. Français. ⟨tel-00130785⟩

Habilitation à diriger des recherches1 document

  • Pierre Will. Autour de la géométrie hyperbolique complexe, SL(3,$\C$), SU(2,1) et quelques 3-variétés. Mathématiques [math]. Université Grenoble Alpes, 2021. ⟨tel-03530224⟩