Nombre de documents

12

CV de Pierre Dehornoy


Article dans une revue6 documents

  • Pierre Dehornoy. Genus one Birkhoff sections for geodesic flows. Ergodic Theory and Dynamical Systems, Cambridge University Press (CUP), 2015, 35 (6), pp.1795-1813. <10.1017/etds.2014.14>. <hal-00725790v2>
  • Pierre Dehornoy. Geodesic flow, left-handedness, and templates. Algebraic and Geometric Topology, Mathematical Sciences Publishers, 2015, 15, pp.1525-1597. <10.2140/agt.2015.15.1525>. <hal-00655422v3>
  • Pierre Dehornoy. On the zeroes of the Alexander polynomial of a Lorenz knot. Annales de l'Institut Fourier, Association des Annales de l'Institut Fourier, 2015, 65 (2), pp.509-548. <10.5802/aif.2938 >. <hal-00633590v2>
  • Pierre Dehornoy. Les noeuds de Lorenz. L'Enseignement Mathématique, 2011, 57, pp.211-280. <hal-00375709v2>
  • Pierre Dehornoy. Almost commensurability of 3-dimensional Anosov flows. Comptes rendus de l'Académie des sciences. Série I, Mathématique, Elsevier, 2011, 351 (3-4), pp.127-129. <10.1016/j.crma.2013.02.012 >. <hal-00789091v2>
  • Pierre Dehornoy. On the 3-distortion of a path.. European Journal of Combinatorics, Elsevier, 2008, http://www.elsevier.com/wps/find/journaldescription.cws_home/622824/description#description. <10.1016/j.ejc.2006.11.002>. <hal-00017449v2>

Pré-publication, Document de travail5 documents

  • Marcos Cossarini, Pierre Dehornoy. Intersection norms on surfaces and Birkhoff cross sections. IF_PREPUB. Coauthor Marcos Cossarini has been added. He noted a gap in the previous proof of Thm B and propo.. 2016. <hal-01305671v2>
  • Ana Rechtman, Pierre Dehornoy. The trunkenness of a volume-preserving vector field. IF_PREPUB. 2016. <hal-01326696>
  • Pierre Dehornoy. Which geodesic flows are left-handed ?. IF_PREPUB. 2015. <hal-01102467v1>
  • Pierre Dehornoy, Tali Pinsky. Coding of geodesics and Lorenz-like templates for some geodesic flows. IF_PREPUB. 21 pages. 2014. <hal-01083278v2>
  • Sebastian Baader, Pierre Dehornoy. Minor theory for surfaces and divides of maximal signature. In its current form, Lemma 2.3 is false, so that our proof of Theorem A and Proposition B has an .. 2012. <hal-00759428>

Communication dans un congrès1 document

  • Pierre Dehornoy. Small dilatation homeomorphisms as monodromies of Lorenz knots. Growth and Mahler measures in geometry and topology, Jul 2013, Stockholm, Sweden. <hal-00943703>