Number of documents

38

Nabil H. Mustafa


Homepage of Nabil Mustafa.


Journal articles17 documents

  • Mónika Csikós, Nabil Mustafa, Andrey Kupavskii. Tight Lower Bounds on the VC-dimension of Geometric Set Systems. Journal of Machine Learning Research, Microtome Publishing, 2019, 20 (81), pp.1-8. ⟨hal-02316979⟩
  • Jesús A. de Loera, Xavier Goaoc, Frédéric Meunier, Nabil Mustafa. The discrete yet ubiquitous theorems of Caratheodory, Helly, Sperner, Tucker, and Tverberg. Bulletin of the American Mathematical Society, American Mathematical Society, 2019, 56, pp.415-511. ⟨10.1090/bull/1653⟩. ⟨hal-02050466⟩
  • Kunal Dutta, Arijit Ghosh, Bruno Jartoux, Nabil Mustafa. Shallow packings, semialgebraic set systems, Macbeath regions, and polynomial partitioning. Discrete and Computational Geometry, Springer Verlag, 2019, 61 (4), pp.756-777. ⟨10.1007/s00454-019-00075-0⟩. ⟨hal-02316975⟩
  • Norbert Bus, Nabil Mustafa, Saurabh Ray. Practical and efficient algorithms for the geometric hitting set problem. Discrete Applied Mathematics, Elsevier, 2018, 240, pp.25 - 32. ⟨10.1016/j.dam.2017.12.018⟩. ⟨hal-01797815⟩
  • Andrey Kupavskii, Nabil Mustafa, Konrad Swanepoel. Bounding the Size of an Almost-Equidistant Set in Euclidean Space. Combinatorics, Probability and Computing, Cambridge University Press (CUP), 2018, pp.1 - 7. ⟨10.1017/S0963548318000287⟩. ⟨hal-01816048⟩
  • Nabil Mustafa, Saurabh Ray. On a Problem of Danzer. Combinatorics, Probability and Computing, Cambridge University Press (CUP), 2018, pp.1 - 10. ⟨10.1017/S0963548318000445⟩. ⟨hal-01895934⟩
  • Nabil Mustafa, Saurabh Ray. Epsilon-Mnets: Hitting Geometric Set Systems with Subsets. Discrete and Computational Geometry, Springer Verlag, 2017, ⟨10.1007/s00454-016-9845-8⟩. ⟨hal-01468731⟩
  • Norbert Bus, Shashwat Garg, Nabil Mustafa, Saurabh Ray. Limits of Local Search: Quality and Efficiency. Discrete and Computational Geometry, Springer Verlag, 2017, ⟨10.1007/s00454-016-9819-x⟩. ⟨hal-01468685⟩
  • Nabil Mustafa, Kunal Dutta, Arijit Ghosh. A Simple Proof of Optimal Epsilon Nets. Combinatorica, Springer Verlag, 2017, ⟨10.1007/s00493-017-3564-5⟩. ⟨hal-01360452⟩
  • Nabil Mustafa, János Pach. On the Zarankiewicz Problem for the Intersection Hypergraphs. Journal of Combinatorial Theory, Series A, Elsevier, 2016, 141, pp.1-7. ⟨10.1016/j.jcta.2016.02.001⟩. ⟨hal-01345859⟩
  • Norbert Bus, Shashwat Garg, Nabil Mustafa, Saurabh Ray. Tighter Estimates for ϵ-nets for Disks. Computational Geometry: Theory and Applications Computational Geometry @ ScienceDirect, 2016, 53, pp.27-35. ⟨10.1016/j.comgeo.2015.12.002⟩. ⟨hal-01345860⟩
  • Nabil Mustafa. A Simple Proof of the Shallow Packing Lemma. Discrete and Computational Geometry, Springer Verlag, 2016, 55 (3), pp.739-743. ⟨10.1007/s00454-016-9767-5⟩. ⟨hal-01345858⟩
  • Nabil Mustafa, Saurabh Ray. An Optimal Generalization of the Colorful Carathéodory Theorem. Discrete Mathematics, Elsevier, 2016, ⟨10.1016/j.disc.2015.11.019⟩. ⟨hal-01233467⟩
  • Nabil Mustafa, Saurabh Ray, Mudassir Shabbir. K-Centerpoints Conjectures for Pointsets in R^d. International Journal of Computational Geometry and Applications, World Scientific Publishing, 2015, 23 (3), pp.23. ⟨10.1142/S0218195915500107⟩. ⟨hal-01188994⟩
  • N. Bus, Nabil Mustafa, Venceslas Biri. Global Illumination Using Well-Separated Pair Decomposition. Computer Graphics Forum, Wiley, 2015, 34 (8), pp.88 - 103. ⟨10.1111/cgf.12610⟩. ⟨hal-01188993v2⟩
  • Nabil Mustafa, Rajiv Raman, Saurabh Ray. QPTAS for Weighted Geometric Set Cover on Pseudodisks and Halfspaces. SIAM Journal on Computing, Society for Industrial and Applied Mathematics, 2015. ⟨hal-01188992⟩
  • Nabil Mustafa, Hans Raj Tiwary, Daniel Werner. A Proof of the Oja Depth Conjecture in the Plane. Computational Geometry: Theory and Applications Computational Geometry @ ScienceDirect, 2014, 47 (6), pp.668-674. ⟨hal-01026341⟩

Conference papers16 documents

  • Chien-Chung Huang, Mathieu Mari, Claire Mathieu, Joseph Mitchell, Nabil Mustafa. Maximizing Covered Area in the Euclidean Plane with Connectivity Constraint. Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, Sep 2019, Cambridge, United States. ⟨hal-02391779⟩
  • Karim Adiprasito, Imre Barany, Nabil Mustafa. Theorems of Carathéodory, Helly, and Tverberg without dimension. Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2019), Jan 2019, San Diego, United States. ⟨10.1137/1.9781611975482.143⟩. ⟨hal-02316991⟩
  • Nabil Mustafa. Computing Optimal Epsilon-Nets Is as Easy as Finding an Unhit Set. 46th International Colloquium on Automata, Languages, and Programming (ICALP), Jul 2019, Patras, Greece. ⟨hal-02316988⟩
  • Maxime Maria, Nabil Mustafa, Thomas Bardoux, Jérémie Defaye, Venceslas Biri. Visibility based WSPD for Global Illumination. 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2018), Jan 2018, Funchal, Portugal. pp.81-90. ⟨hal-01698656⟩
  • Bruno Jartoux, Nabil Mustafa. Optimality of Geometric Local Search. 34th International Symposium on Computational Geometry (SoCG 2018), Jun 2018, Budapest, Hungary. ⟨10.4230/LIPIcs.SoCG.2018.48⟩. ⟨hal-01797822⟩
  • Nabil Mustafa, Saurabh Ray. On a problem of Danzer. 26th Annual European Symposium on Algorithms (ESA 2018), Aug 2018, Helsinki, Finland. ⟨10.4230/LIPIcs.ESA.2018.64⟩. ⟨hal-01890699⟩
  • Kunal Dutta, Arijit Ghosh, Bruno Jartoux, Nabil Mustafa. Shallow packings, semialgebraic set systems, Macbeath regions and polynomial partitioning. 33rd International Symposium on Computational Geometry (SoCG 2017), Jul 2017, Brisbane, Australia. ⟨hal-01360443⟩
  • Daniel Antunes, Claire Mathieu, Nabil Mustafa. Combinatorics of Local Search: An Optimal 4-Local Hall's Theorem for Planar Graphs. 25th Annual European Symposium on Algorithms (ESA 2017), Sep 2017, Vienna, Austria. ⟨10.4230/LIPIcs.ESA.2017.8⟩. ⟨hal-01740357⟩
  • Andrey Kupavskii, Nabil Mustafa, János Pach. New Lower Bounds for ϵ-nets. 32nd Annual International Symposium on Computational Geometry (SoCG 2016), Jun 2016, Boston, MA, United States. pp.54, ⟨10.4230/LIPIcs.SoCG.2016.54⟩. ⟨hal-01345861⟩
  • Nabil Mustafa, Janos Pach. On the Zarankiewicz Problem for Intersection Hypergraphs. Proc. of the 23rd International Symposium on Graph Drawing and Network Visualization (GD '15), Sep 2015, Los Angeles, United States. ⟨hal-01188986⟩
  • Norbert Bus, Nabil Mustafa, Saurabh Ray. Geometric Hitting Sets for Disks: Theory and Practice. 23rd European Symposium on Algorithms (ESA 2015), 2015, Patras, Greece. ⟨hal-01188987⟩
  • Norbert Bus, Shashwat Garg, Nabil Mustafa, Saurabh Ray. Improved Local Search for Geometric Hitting Set. Proc. of the 32st International Symposium on Theoretical Aspects of Computer Science (STACS), 2015, Munich, Germany. ⟨hal-01188990⟩
  • Norbert Bus, Nabil Mustafa, Venceslas Biri. IlluminationCut. Eurographics, 2015, Zurich, Switzerland. ⟨hal-01188989⟩
  • Nabil Mustafa, Saurabh Ray. Near-Optimal Generalisations of a Theorem of Macbeath. Proc. of the 31st International Symposium on Theoretical Aspects of Computer Science (STACS '14), 2014., Mar 2014, France. pp.578-589. ⟨hal-01026333⟩
  • Nabil Mustafa, Rajiv Raman, Saurabh Ray. Settling the APX-Hardness Status for Geometric Set Cover. Proc. of the 55th Annual Symposium on Foundations of Computer Science (FOCS), 2014, Philadelphia, United States. ⟨10.1109/FOCS.2014.64⟩. ⟨hal-01188991⟩
  • Nabil Mustafa, Ray Saurabh. A Theorem of Barany Revisited and Extended. 2012 Symposium on Computational Geometry, Jun 2012, United States. pp.333--338. ⟨hal-00761355⟩

Books1 document

  • Michel Couprie, Jean Cousty, Yukiko Kenmochi, Nabil Mustafa. Discrete Geometry for Computer Imagery, 21st IAPR International Conference, DGCI 2019, Marne-la-Vallée, France, March 26–28, 2019, Proceedings. 2019, ⟨10.1007/978-3-030-14085-4⟩. ⟨hal-02405904⟩

Book sections2 documents

  • Andrey Kupavskii, Nabil Mustafa, János Pach. Near-Optimal Lower Bounds for Epsilon-nets for Half-spaces and Low Complexity Set Systems. A Journey Through Discrete Mathematics: A Tribute to Jirí Matousek, 2017, 978-3-319-44479-6. ⟨hal-01468669⟩
  • Nabil Mustafa, Kasturi Varadarajan. Epsilon-approximations and epsilon-nets. Handbook of Discrete and Computational Geometry, 2017. ⟨hal-01468664⟩

Preprints, Working Papers, ...1 document

  • Kunal Dutta, Arijit Ghosh, Nabil Mustafa. A new asymmetric correlation inequality for Gaussian measure. 2016. ⟨hal-01360457⟩

Habilitation à diriger des recherches1 document

  • Nabil Mustafa. Approximations of Points: Combinatorics and Algorithms. Computational Geometry [cs.CG]. Université Paris-Est, 2013. ⟨tel-01062825⟩