Skip to Main content
Number of documents

10

Lucie Quibel


Journal articles3 documents

  • Jean-Marc Hérard, Olivier Hurisse, Lucie Quibel. A four-field three-phase flow model with both miscible and immiscible components. ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, In press, ⟨10.1051/m2an/2020037⟩. ⟨hal-02432793⟩
  • Philippe Helluy, Olivier Hurisse, Lucie Quibel. Assessment of numerical schemes for complex two-phase flows with real equations of state. Computers and Fluids, Elsevier, 2020, 196 (104347), ⟨10.1016/j.compfluid.2019.104347⟩. ⟨hal-02315038v2⟩
  • Olivier Hurisse, Lucie Quibel. A HOMOGENEOUS MODEL FOR COMPRESSIBLE THREE-PHASE FLOWS INVOLVING HEAT AND MASS TRANSFER.. ESAIM: Proceedings and Surveys, EDP Sciences, In press. ⟨hal-01976903⟩

Conference papers1 document

  • Clément Colas, Martin Ferrand, Jean-Marc Hérard, Olivier Hurisse, Erwan Le Coupanec, et al.. A Numerical Convergence Study of some Open Boundary Conditions for Euler equations. Finite Volumes for Complex Applications FVCA9, Jun 2020, Bergen, Norway. ⟨hal-02422802v2⟩

Preprints, Working Papers, ...4 documents

  • Olivier Hurisse, Lucie Quibel. Simulations of liquid-vapor water flows with non-condensable gases on the basis of a two-fluid model.. 2021. ⟨hal-03094067⟩
  • Olivier Hurisse, Lucie Quibel. Simulations of water-vapor two-phase flows with non-condensable gas using a Noble-Able-Chemkin equation of state. 2020. ⟨hal-02963324⟩
  • Olivier Hurisse, Lucie Quibel. Simulations of a simplified LOCA scenario with a non-equilibrium homogeneous model. 2020. ⟨hal-02901408⟩
  • Philippe Helluy, Olivier Hurisse, Lucie Quibel. Simulation of a liquid-vapour compressible flow by a Lattice Boltzmann Method. 2020. ⟨hal-02451368⟩

Reports1 document

  • Lucie Quibel, Philippe Helluy, Marie Chion, Philippe Ricka. Mélanger des gaz raides pour créer de nouvelles lois d'état. [Rapport de recherche] IRMA, Université de Strasbourg; EDF R&D. 2019. ⟨hal-02114552⟩

Theses1 document

  • Lucie Quibel. Simulation of water-vapor two-phase flows with non-condensable gas.. Mathematics [math]. Université de Strasbourg, 2020. English. ⟨tel-02941486v3⟩