Skip to Main content
Number of documents

29

RIZZI LUca


Journal articles22 documents

  • Davide Barilari, Luca Rizzi. Bakry-Émery curvature and model spaces in sub-Riemannian geometry. Mathematische Annalen, Springer Verlag, In press, ⟨10.1007/s00208-020-01982-x⟩. ⟨hal-02163180⟩
  • Andrei Agrachev, Davide Barilari, Luca Rizzi. Curvature: a variational approach. Memoirs of the American Mathematical Society, American Mathematical Society, 2019, 256 (1225), ⟨10.1090/memo/1225⟩. ⟨hal-00838195⟩
  • Dario Prandi, Luca Rizzi, Marcello Seri. A sub-Riemannian Santaló formula with applications to isoperimetric inequalities and first Dirichlet eigenvalue of hypoelliptic operators. Journal of Differential Geometry, International Press, 2019, 111 (2), pp.339-379. ⟨10.4310/jdg/1549422105⟩. ⟨hal-01221668v3⟩
  • Luca Rizzi, Pavel Silveira. Sub-Riemannian Ricci curvatures and universal diameter bounds for 3-Sasakian manifolds. Journal of the Institute of Mathematics of Jussieu, Cambridge University Press (CUP), 2019, 18 (4), pp.783-827. ⟨10.1017/S1474748017000226⟩. ⟨hal-01221661⟩
  • Davide Barilari, Luca Rizzi. Sub-Riemannian interpolation inequalities. Inventiones Mathematicae, Springer Verlag, 2019, 215 (3), pp.977-1038. ⟨10.1007/s00222-018-0840-y⟩. ⟨hal-01524541⟩
  • Valentina Franceschi, Dario Prandi, Luca Rizzi. On the Essential Self-Adjointness of Singular Sub-Laplacians. Potential Analysis, Springer Verlag, In press, ⟨10.1007/s11118-018-09760-w⟩. ⟨hal-01981861⟩
  • Luca Rizzi. A counterexample to gluing theorems for MCP metric measure spaces. Bulletin of the London Mathematical Society, London Mathematical Society, 2018, 50 (5), pp.781-790. ⟨10.1112/blms.12186⟩. ⟨hal-01635434⟩
  • Dario Prandi, Marcello Seri, Luca Rizzi. Quantum confinement on non-complete Riemannian manifolds. Journal of Spectral Theory, European Mathematical Society, 2018, 8 (4), pp.1221-1280. ⟨10.4171/JST/226⟩. ⟨hal-01362030v2⟩
  • Davide Barilari, Luca Rizzi. Sharp measure contraction property for generalized H-type Carnot groups. Communications in Contemporary Mathematics, World Scientific Publishing, 2018, 20 (6), ⟨10.1142/S021919971750081X⟩. ⟨hal-01468967v2⟩
  • Andrei Agrachev, Ugo Boscain, Robert Neel, Luca Rizzi. Intrinsic random walks in Riemannian and sub-Riemannian geometry via volume sampling. ESAIM: Control, Optimisation and Calculus of Variations, EDP Sciences, In press, 24 (3), pp.1075-1105. ⟨10.1051/cocv/2017037⟩. ⟨hal-01259762⟩
  • Davide Barilari, Luca Rizzi. On Jacobi fields and canonical connection in sub-Riemannian geometry. Archivum Mathematicum, Masarykova Universita, 2017, 53 (2), pp.77-92. ⟨10.5817/AM2017-2-77⟩. ⟨hal-01160902v2⟩
  • Antonio Lerario, Luca Rizzi. How many geodesics join two points on a contact sub-Riemannian manifold?. Journal of Symplectic Geometry, International Press, 2017, ⟨10.4310/JSG.2017.v15.n1.a7⟩. ⟨hal-01096718⟩
  • Ugo Boscain, Robert Neel, Luca Rizzi. Intrinsic random walks and sub-Laplacians in sub-Riemannian geometry. Advances in Mathematics, Elsevier, 2017, ⟨10.1016/j.aim.2017.04.024⟩. ⟨hal-01122735v2⟩
  • Luca Rizzi, Ulysse Serres. On the cut locus of free, step two Carnot groups. Proceedings of the American Mathematical Society, American Mathematical Society, 2017, 145, pp.5341-5357. ⟨10.1090/proc/13658⟩. ⟨hal-01377408v2⟩
  • Andrei Agrachev, Davide Barilari, Luca Rizzi. Sub-Riemannian curvature in contact geometry. Journal of Geometric Analysis, 2016, ⟨10.1007/s12220-016-9684-0⟩. ⟨hal-01160901v3⟩
  • Luca Rizzi. Measure contraction properties of Carnot groups . Calculus of Variations and Partial Differential Equations, Springer Verlag, 2016, ⟨10.1007/s00526-016-1002-y⟩. ⟨hal-01218376v3⟩
  • D. Barilari, L. Rizzi. Comparison theorems for conjugate points in sub-Riemannian geometry. ESAIM: Control, Optimisation and Calculus of Variations, EDP Sciences, 2016, 22 (2), ⟨10.1051/cocv/2015013⟩. ⟨hal-00931840⟩
  • Andrei Agrachev, Luca Rizzi, Pavel Silveira. On conjugate times of LQ optimal control problems. Journal of Dynamical and Control Systems, Springer Verlag, 2014, pp.14. ⟨hal-01096715⟩
  • Davide Barilari, Luca Rizzi. A Formula for Popp’s Volume in Sub-Riemannian Geometry. Analysis and Geometry in Metric Spaces, Versita, 2013, 1, ⟨10.2478/agms-2012-0004⟩. ⟨hal-00751222⟩
  • Jean-Alain Fehrentz, V. Cassina, A. Torsello, A. Tempestini, D. Salerno, et al.. Biophysical characterization of a binding site for TLQP-21, a naturally occurring peptide which induces resistance to obesity. Biochimica et Biophysica Acta:Biomembranes, Elsevier, 2013, 1828 (2), pp.455-460. ⟨10.1016/j.bbamem.2012.10.023⟩. ⟨hal-02871939⟩
  • Luca Rizzi, Oliver Piattella, Sergio Cacciatori, Vittorio Gorini. The step-harmonic potential. American Journal of Physics, American Association of Physics Teachers, 2010, pp.19. ⟨10.1119/1.3379290⟩. ⟨hal-01122823⟩
  • R. Brent Tully, Edward J. Shaya, Igor D. Karachentsev, Hélène M. Courtois, Dale D. Kocevski, et al.. Our Peculiar Motion Away from the Local Void. The Astrophysical Journal, American Astronomical Society, 2008, 676, pp.184-205. ⟨10.1086/527428⟩. ⟨hal-00416760⟩

Directions of work or proceedings1 document

  • Valentina Franceschi, Dario Prandi, Luca Rizzi. Recent results on the essential self-adjointness of sub-Laplacians, with some remarks on the presence of characteristic points. Séminaire de Théorie Spectrale et Géométrie, 33, pp.1-15, 2015, ⟨10.5802/tsg.311⟩. ⟨hal-02356491⟩

Preprints, Working Papers, ...5 documents

  • Thomas Mietton, Luca Rizzi. Branching geodesics in sub-Riemannian geometry. 2020. ⟨hal-02493682v2⟩
  • Luca Rizzi, Tommaso Rossi. Heat content asymptotics for sub-Riemannian manifolds. 2020. ⟨hal-02563090⟩
  • Fabrice Baudoin, Erlend Grong, Gianmarco Molino, Luca Rizzi. Comparison theorems on H-type sub-Riemannian manifolds. 2019. ⟨hal-02282474⟩
  • Yacine Chitour, Dario Prandi, Luca Rizzi. Weyl’s law for singular Riemannian manifolds. 2019. ⟨hal-01902740v4⟩
  • Fabrice Baudoin, Erlend Grong, Gianmarco Molino, Luca Rizzi. H-type foliations. 2018. ⟨hal-01947678⟩

Theses1 document

  • Luca Rizzi. The curvature of optimal control problems with applications to sub-Riemannian geometry. Differential Geometry [math.DG]. Scuola Internazionale di Studi Superiori Avanzati (SISSA, Trieste, Italy), 2014. English. ⟨tel-01122732⟩