Number of documents

31


Journal articles22 documents

  • Mohamad Darwich, Luc Molinet. SOME REMARKS ON THE NONLINEAR SCHRODINGER EQUATION WITH FRACTIONAL DISSIPATION.. Journal of Mathematical Physics, American Institute of Physics (AIP), 2016, 57 (10), pp.101502. ⟨http://aip.scitation.org/doi/10.1063/1.4965225⟩. ⟨10.1063/1.4965225⟩. ⟨hal-01545104⟩
  • Luc Molinet, Slim Tayachi. Remarks on the Cauchy problem for the one-dimensional quadratic (fractional) heat equation. Journal of Functional Analysis, Elsevier, 2015, 269, pp.2305-2327. ⟨hal-00807047⟩
  • Luc Molinet, Stéphane Vento. Improvement of the energy method for strongly non resonant dispersive equations and applications. Analysis & PDE, Mathematical Sciences Publishers, 2015, 8 (6), pp.1455-1495. ⟨hal-01064252⟩
  • Luc Molinet, Didier Pilod. Bilinear Strichartz estimates for the ZK equation and applications. Annales de l'Institut Henri Poincaré (C) Non Linear Analysis, Elsevier, 2015, 32 (2), pp.347-371. ⟨hal-01205993⟩
  • Zihua Guo, Yiquan Lin, Luc Molinet. Well-posedness in energy space for the periodic modified Benjamin-Ono equation. Journal of Differential Equations, Elsevier, 2014, 256 (8), pp.2778-2806. ⟨hal-01206024⟩
  • Luc Molinet, Stéphane Vento. Sharp ill-posedness and well-posedness results for the KdV-Burgers equation: the periodic case. Transactions of the American Mathematical Society, American Mathematical Society, 2013, 365 (1), pp.123-141. ⟨hal-00467657v2⟩
  • Luc Molinet, Yuzhao Wang. Dispersive limit from the Kawahara to the KdV equation. Journal of Differential Equations, Elsevier, 2013, 255 (8), pp.2196-2219. ⟨hal-00694082v2⟩
  • Luc Molinet. A note on the inviscid limit of the Benjamin-Ono-Burgers equation in the energy space. Proceedings of the American Mathematical Society, American Mathematical Society, 2013, 141 (8), pp.2793-2798. ⟨hal-00631034⟩
  • Luc Molinet, Didier Pilod. Global well-posedness and limit behavior for a higher-order Benjamin-Ono equation. Communications in Partial Differential Equations, Taylor & Francis, 2012, 37 (11), pp.2050-2080. ⟨hal-00637981⟩
  • Luc Molinet, Didier Pilod. The Cauchy problem for the Benjamin-Ono equation in $L^2$ revisited. Analysis & PDE, Mathematical Sciences Publishers, 2012, 5 (2), pp.365-395. ⟨hal-00499346⟩
  • Luc Molinet. Sharp ill-posedness results for the KdV and mKdV equations on the torus. Advances in Mathematics, Elsevier, 2012, 230 (4-6), pp.1895-1930. ⟨hal-00593976v3⟩
  • Luc Molinet, Stéphane Vento. Sharp ill-posedness and well-posedness results for the KdV-Burgers equation: the real line case. Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, Scuola Normale Superiore 2011, 10 (3), pp.531-560. ⟨hal-00436652v2⟩
  • Luc Molinet. A note on ill-posedness for the KdV equation. Differential and integral equations, Khayyam Publishing, 2011, 24 (7-8), pp.759-765. ⟨hal-00473966v2⟩
  • Luc Molinet, Jean-Claude Saut, Nikolay Tzvetkov. Global well-posedness for the KP-II equation on the background of a non-localized solution. Annales de l'Institut Henri Poincaré (C) Non Linear Analysis, Elsevier, 2011, 28 (5), ⟨10.1016/j.anihpc.2011.04.004⟩. ⟨hal-01270936⟩
  • Khaled El Dika, Luc Molinet. Stability of multi antipeakon-peakons profile. Discrete and Continuous Dynamical Systems - Series B, American Institute of Mathematical Sciences, 2009, 12 (3), pp.561-577. ⟨hal-00424454⟩
  • Olivier Goubet, Luc Molinet. Global attractor for weakly damped Nonlinear Schrödinger equations in $L^2(\R)$. Nonlinear Analysis: Theory, Methods and Applications, Elsevier, 2009, 71, pp.317-320. ⟨hal-00421278⟩
  • Luc Molinet, Francis Ribaud. WELL-POSEDNESS IN H(1) FOR GENERALIZED BENJAMIN-ONO EQUATIONS ON THE CIRCLE. Discrete and Continuous Dynamical Systems - Series S, American Institute of Mathematical Sciences, 2009, 23 (4), pp.1295--1311. ⟨10.3934/dcds.2009.23.1295⟩. ⟨hal-00693546⟩
  • Luc Molinet. Sharp ill-posedness result for the periodic Benjamin-Ono equation. Journal of Functional Analysis, Elsevier, 2009, 257, pp.3488-3516. ⟨hal-00336559⟩
  • Luc Molinet. On ill-posedness for the one-dimensional periodic cubic Schrodinger equation. Mathematical Research Letters, 2009, 16 (1), pp.111-120. ⟨hal-00291648v2⟩
  • Luc Molinet. Global attractor and asymptotic smoothing effects for the weakly damped cubic Schrödinger equation in $L^2(\T)$. Dynamics of Partial Differential Equations, International Press, 2009, 6 (1), pp.15-34. ⟨hal-00291662v3⟩
  • Luc Molinet. Global well-posedness in L^2 for the periodic Benjamin-Ono equation. American Journal of Mathematics, Johns Hopkins University Press, 2008, 130 (3), pp.635-683. ⟨hal-00016752v2⟩
  • Luc Molinet, Jean-Claude Saut, Nikolay Tzvetkov. Global well-posedness for the KP-I equation on the background of a non localized solution. Communications in Mathematical Physics, Springer Verlag, 2007, 272 (3), pp.775-810. ⟨hal-00104398⟩

Preprints, Working Papers, ...9 documents

  • Luc Molinet, Didier Pilod, Stéphane Vento. On well-posedness for some dispersive perturbations of Burgers' equation. 2018. ⟨hal-01464874v2⟩
  • Luc Molinet. ASYMPTOTIC STABILITY FOR SOME NON POSITIVE PERTURBATIONS OF THE CAMASSA-HOLM PEAKON WITH APPLICATION TO THE ANTIPEAKON-PEAKON PROFILE. 2018. ⟨hal-01768579v2⟩
  • Luc Molinet. A RIGIDITY RESULT FOR THE HOLM-STALEY b-FAMILY OF EQUATIONS WITH APPLICATION TO THE ASYMPTOTIC STABILITY OF THE DEGASPERIS-PROCESI PEAKON. 2018. ⟨hal-01885442⟩
  • Luc Molinet. A LIOUVILLE PROPERTY WITH APPLICATION TO ASYMPTOTIC STABILITY FOR THE CAMASSA-HOLM EQUATION. 2018. ⟨hal-01768549⟩
  • Luc Molinet, Didier Pilod, Stéphane Vento. ON UNCONDITIONAL WELL-POSEDNESS FOR THE PERIODIC MODIFIED KORTEWEG-DE VRIES EQUATION. 2017. ⟨hal-01346221v3⟩
  • André Kabakouala, Luc Molinet. On the stability of the solitary waves to the (generalized) kawahara equation. 2016. ⟨hal-01403360⟩
  • Emmanuel Humbert, Luc Molinet. Optimal transportation between hypersurfaces bounding some strictly convex domains. 2015. ⟨hal-01271012⟩
  • Khaled El Dika, Luc Molinet. Stability of multipeakons. 2008. ⟨hal-00260227⟩
  • Luc Molinet, Jean-Claude Saut, Nikolay Tzvetkov. Remarks on the mass constraint for KP type equations. 2006. ⟨hal-00020647⟩