Skip to Main content
Number of documents

19

Laurent Moutet, researcher in science didactics, volunteer collaborator at the LDAR


Aggregation of physical sciences (chemistry option), doctor of didactics of disciplines, doctor of organic chemistry, voluntary collaborator at LDAR

laurent.moutet@ac-amiens.fr


Current research themes

  • Interdisciplinary modelling.
  • Work on the links between mathematics and physical sciences.
  • Construction of an analysis tool for school tasks involving mathematics and physics or chemistry.
  • Construction and analysis of sequences intended for secondary school students and involving complete modelling cycles (problem solving) and rationality frameworks involving physics or chemistry.



Summaries of current research

The mathematical workspace (MWS) was developed to better understand the didactical issues around mathematical work in a school environment (Kuzniak et al., 2016). The MWS has two levels: one of a cognitive nature in relation to the learner and another of an epistemological nature in relation to the mathematical content studied. The MWS diagram has been adapted (Moutet, 2016) by adding an epistemological level corresponding to the rationality framework of physics. The modelling cycle of Blum & Leiss (2005) describes the different steps used by a mathematical researcher during the modelling process. The extended MWS framework was used to analyse the tasks associated with some of the steps in the modelling cycle in a teaching sequence involving special relativity (de Hosson, 2010) with an approach using Minkowski diagrams. The extended MWS framework takes into account the mobilisation of the epistemological planes of mathematics and/or physics for each of the tasks required of the students. This framework also allowed to show that GeoGebra, a dynamic geometry software, develops specific geneses compared to a paper-pencil activity. Finally, this framework led to the realization of the a priori analysis of each of the tasks to be performed by the students during a teaching sequence and to successfully test the a posteriori analysis of the work performed by them.

Using another context, the consideration of the epistemological plane of chemistry, the cognitive plane and the three types of genesis described in the MWS model is fully transposable to the description of the tasks that students are asked to perform in solution chemistry. Theoretical interpretation of an experiment involving algebraic relationships between the different quantities of the reacting chemical species is a step that usually poses the most problems for students. The a priori analysis of the tasks to be carried out, extrapolating the theoretical framework of the ETM extended to the field of chemistry, makes it possible to propose a new strategy using another register of semiotic representation as well as the use of GeoGebra software.

Professional activity

  • Acting as IA IPR (inspection mission, Amiens academy, France)

Participation in resource publications by the IGEN
 

  • GRIESP (2016). Experimentation and modelling, the place of mathematical language in physics-chemistry, General Inspection of Physical Sciences (IGEN).
  • GRIESP (2015). Documentary activities in physics and chemistry in secondary school and in the preparatory class for higher education, General Inspection of Physical Sciences (IGEN).
  • GRIESP (2014). Solving a physics-chemistry problem as soon as the 10th grade, General Inspection of Physical Sciences (IGEN).


Journal articles3 documents

  • Laurent Moutet. Analyse d'une séquence d'enseignement de la relativité restreinte : l'apport du modèle de l'ETM étendu. Annales de Didactiques et de Sciences Cognitives, https://mathinfo.unistra.fr/irem/publications/adsc/volumes/#c14929, 2018. ⟨hal-03195485⟩
  • Marie Degueil-Castaing, Laurent Moutet, Bernard Maillard. Intramolecular Homolytic Displacements. 30. Functional Decarbonylative Transformations of Aldehydes via Homolytically Induced Decomposition of Unsaturated Peroxyacetals. Journal of Organic Chemistry, American Chemical Society, 2000, 65 (13), pp.3961-3965. ⟨10.1021/jo9918495⟩. ⟨hal-03196940⟩
  • Laurent Moutet, D. Bonafoux, M. Degueil-Castaing, B. Maillard. Functional transformation of aldehydes and ketones via homolytic induced decomposition of unsaturated peroxy acetals and peroxy ketals. Chemical Communications, Royal Society of Chemistry, 1999, pp.139-140. ⟨10.1039/a808418a⟩. ⟨hal-03196937⟩

Conference papers10 documents

  • Laurent Moutet. Study of a problem solving using the extended mathematical working space framework (extended MWS). ICME-14, Jul 2021, Shanghai, China. ⟨hal-03304271⟩
  • Laurent Moutet. The extended theoretical framework of Mathematical Working Space (extended MWS): potentialities in physics. CERME11, Feb 2019, Utrecht, Netherlands. ⟨hal-03195523⟩
  • Laurent Moutet. The extended theoretical framework of Mathematical Working Space (extended MWS): Potentialities in physics. Eleventh Congress of the European Society for Research in Mathematics Education, Utrecht University, Feb 2019, Utrecht, Netherlands. ⟨hal-02408955⟩
  • Laurent Moutet. The extended theoretical framework of Mathematical Working Space (extended MWS): use in physics and chemistry. ICTMA19, Jul 2019, Hong-Kong, China. ⟨hal-03195506⟩
  • Laurent Moutet. The extended theoretical framework of Mathematical Working Space: comparison with the Anthropological Theory of the Didactic and use in physics or chemistry. ESERA, Aug 2019, Bologna, Italy. ⟨hal-03195491⟩
  • Laurent Moutet. Le cadre théorique de l’ETM étendu : Analyse d’une séquence utilisant la relativité restreinte. EMF, Paris : IREM de Paris, Oct 2018, Gennevilliers, France. pp.433-440. ⟨hal-03195533⟩
  • Laurent Moutet. Le cadre théorique de l’ETM étendu : potentialités en physique et en chimie. ETM6, Valparaíso, Chile: Pontificia Universidad Católica de Valparaíso., Dec 2018, Valparaiso, Chili. pp.207-218. ⟨hal-03195530⟩
  • Laurent Moutet. Le cadre théorique de l’ETM étendu : analyse d’une séquence utilisant la relativité restreinte. 10e rencontres scientifiques de l’ARDiST, Mar 2018, Saint Malo, France. ⟨hal-03195544⟩
  • Laurent Moutet. Le cadre théorique l’ETM étendu : analyse d’une séquence utilisant la relativité restreinte. 69e CIEAEM, CIEAEM, Jul 2017, Berlin, Allemagne. pp.95-99. ⟨hal-03195546⟩
  • Charlotte Derouet, Alain Kuzniak, Dominique Laval, Elizabeth Montoya Delgadillo, Laurent Moutet, et al.. Modeling tasks and mathematical work. CERME 10, Dublin, Ireland, Feb 2017, Dublin, Ireland. ⟨hal-01933419⟩

Book sections3 documents

  • Laurent Moutet. Professional Testimony: Construction and Analysis of a “Graphic Object” in a Physics Class in a 12th Grade Science Major. Joël Bisault, Roselyne Le Bourgeois, Jean-François Thémines, Mickaël Le Mentec, Céline Chauvet-Chanoine. Objects to Learn About and Objects for Learning 1, Wiley, 2022, Online ISBN: 9781119902171 Print ISBN: 9781786306715. ⟨10.1002/9781119902171.ch5⟩. ⟨hal-03589558⟩
  • Laurent Moutet. Le cadre théorique de l’ETM étendu: analyse d’une séquence utilisant la relativité restreinte. Jean-Marie Boilevin; Alain Jameau. Après les 10e rencontres scientifiques.. Actualité des recherches en didactique des sciences et des technologies, Editions de l'ARDIST, pp.249-268, 2021, 978-2-9577091-0-6. ⟨hal-03229421⟩
  • Laurent Moutet. The Extended Theoretical Framework of Mathematical Working Space (Extended MWS): Potentialities in Chemistry. Mathematical Modelling Education in East and West, pp.631-640, 2021, ⟨10.1007/978-3-030-66996-6_53⟩. ⟨hal-03211038⟩

Theses3 documents

  • Laurent Moutet. Diagrammes et théorie de la relativité restreinte : une ingénierie didactique. Linguistique. Université Sorbonne Paris Cité, 2016. Français. ⟨NNT : 2016USPCC275⟩. ⟨tel-01867923⟩
  • Laurent Moutet. DIAGRAMMES ET THÉORIE DE LA RELATIVITÉ RESTREINTE : UNE INGÉNIERIE DIDACTIQUE. Education. Université Paris 7, 2016. Français. ⟨tel-01611332⟩
  • Laurent Moutet. Transformations fonctionnelles homolytiques d'aldéhydes. Chimie organique. Université Bordeaux I, 1998. Français. ⟨tel-01620270⟩