Mots-clés

Nombre de documents

31

HAL page of Laurent Bourgeois


For more information see http://uma.ensta-paristech.fr/~bourgeois


Article dans une revue23 documents

  • Laurent Baratchart, Laurent Bourgeois, Juliette Leblond. Uniqueness results for inverse Robin problems with bounded coefficient. Journal of Functional Analysis, Elsevier, 2016, <10.1016/j.jfa.2016.01.011>. <hal-01084428v2>
  • Vahan Baronian, Laurent Bourgeois, Arnaud Recoquillay. Imaging an acoustic waveguide from surface data in the time domain. Wave Motion, Elsevier, 2016, 66, pp.68 - 87. <10.1016/j.wavemoti.2016.05.006>. <hal-01379890>
  • Eliane Bécache, Laurent Bourgeois, Lucas Franceschini, Jérémi Dardé. Application of mixed formulations of quasi-reversibility to solve ill-posed problems for heat and wave equations: the 1d case. Inverse Problems and Imaging , AIMS American Institute of Mathematical Sciences, 2015, <10.3934/ipi.2015.9.971>. <hal-01235099>
  • Laurent Bourgeois, Jérémi Dardé. The "exterior approach" to solve the inverse obstacle problem for the Stokes system. Inverse Problems and Imaging , AIMS American Institute of Mathematical Sciences, 2014, pp.Pages: 23 - 51. <10.3934/ipi.2014.8.23>. <hal-00937768>
  • Laurent Bourgeois, Sonia Fliss. On the identification of defects in a periodic waveguide from far field data. Inverse Problems, IOP Publishing, 2014, 30 (9), <10.1088/0266-5611/30/9/095004>. <hal-00914674v2>
  • Laurent Bourgeois, Éric Lunéville. On the use of the Linear Sampling Method to identify cracks in elastic waveguides. Inverse Problems, IOP Publishing, 2013, 29, pp.025017. <10.1088/0266-5611/29/2/025017>. <hal-00937686>
  • Laurent Bourgeois. A remark on Lipschitz stability for inverse problems. Comptes rendus hebdomadaires des séances de l'Académie des sciences, Elsevier, 2013, 351, pp.187--190. <10.1016/j.crma.2013.04.004>. <hal-00939437>
  • Laurent Bourgeois, Éric Lunéville. On the use of sampling methods to identify cracks in acoustic waveguides. Inverse Problems, IOP Publishing, 2012, 28 (10), pp.105011.1-105011.18. <10.1088/0266-5611/28/10/105011>. <hal-00849558>
  • Laurent Bourgeois, Nicolas Chaulet, Houssem Haddar. On Simultaneous Identification of the Shape and Generalized Impedance Boundary Condition in Obstacle Scattering. SIAM Journal on Scientific Computing, Society for Industrial and Applied Mathematics, 2012, 34 (3), pp.A1824-A1848. <10.1137/110850347>. <hal-00741618>
  • Laurent Bourgeois, Frédérique Le Louër, Éric Lunéville. On the use of Lamb modes in the linear sampling method for elastic waveguides. Inverse Problems, IOP Publishing, 2011, 27 (5), pp.055001. <10.1088/0266-5611/27/5/055001>. <hal-00849575>
  • Laurent Bourgeois, Nicolas Chaulet, Houssem Haddar. Stable reconstruction of generalized impedance boundary conditions. Inverse Problems, IOP Publishing, 2011, 27 (9), pp.095002. <10.1088/0266-5611/27/9/095002>. <hal-00739766>
  • Laurent Bourgeois, Jérémi Dardé. About identification of defects in an elastic-plastic medium from boundary measurements in the antiplane case. Applicable Analysis, Taylor & Francis, 2011, 90 (10), pp.1481-1497. <10.1080/00036811.2010.549481>. <hal-00849572>
  • Laurent Bourgeois, Jérémi Dardé. A quasi-reversibility approach to solve the inverse obstacle problem. Inverse Problems and Imaging , AIMS American Institute of Mathematical Sciences, 2010, 4 (3), pp.351-377. <10.3934/ipi.2010.4.351>. <hal-00873059>
  • Laurent Bourgeois, Houssem Haddar. Identification of generalized impedance boundary conditions in inverse scattering problems. Inverse Problems and Imaging , AIMS American Institute of Mathematical Sciences, 2010, 4 (1), pp.19-38. <10.3934/ipi.2010.4.19>. <hal-00739327>
  • Laurent Bourgeois, Jérémi Dardé. A duality-based method of quasi-reversibility to solve the Cauchy problem in the presence of noisy data. Inverse Problems, IOP Publishing, 2010, 26 (9), pp.095016. <10.1088/0266-5611/26/9/095016>. <hal-00873058>
  • Laurent Bourgeois. About stability and regularization of ill-posed elliptic Cauchy problems: The case of C1,1 domains. ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2010, 44 (4), pp.715-735. <10.1051/m2an/2010016>. <hal-00873056>
  • Laurent Bourgeois, Jérémi Dardé. About stability and regularization of ill-posed elliptic Cauchy problems: The case of Lipschitz domains. Applicable Analysis, Taylor & Francis, 2010, 89 (11), pp.1745-1768. <10.1080/00036810903393809>. <hal-00849579>
  • Laurent Bourgeois, Éric Lunéville. The linear sampling method in a waveguide: A formulation based on modes. Journal of Physics: Conference Series, IOP Publishing, 2008, 135 (-), pp.012023. <10.1088/1742-6596/135/1/012023>. <hal-00873074>
  • Laurent Bourgeois, Éric Lunéville. The linear sampling method in a waveguide: A modal formulation. Inverse Problems, IOP Publishing, 2008, 24 (1), <10.1088/0266-5611/24/1/015018>. <hal-00876221>
  • Laurent Bourgeois, Colin Chambeyron, Steven Kusiak. Locating an obstacle in a 3D finite depth ocean using the convex scattering support. Journal of Computational and Applied Mathematics, Elsevier, 2007, 204 (2 SPEC. ISS.), pp.387-399. <10.1016/j.cam.2006.01.045>. <hal-00876231>
  • Laurent Bourgeois. A stability estimate for ill-posed elliptic Cauchy problems in a domain with corners. Comptes Rendus Mathématique, Elsevier Masson, 2007, 345 (7), pp.385-390. <10.1016/j.crma.2007.09.014>. <hal-00876225>
  • Laurent Bourgeois. Convergence rates for the quasi-reversibility method to solve the Cauchy problem for Laplace's equation. Inverse Problems, IOP Publishing, 2006, 22 (2), pp.413-430. <10.1088/0266-5611/22/2/002>. <hal-00876239>
  • Laurent Bourgeois. A mixed formulation of quasi-reversibility to solve the Cauchy problem for Laplace's equation. Inverse Problems, IOP Publishing, 2005, 21 (3), pp.1087-1104. <10.1088/0266-5611/21/3/018>. <hal-00876244>

Pré-publication, Document de travail1 document

  • Laurent Bourgeois, Jérémi Dardé. The "exterior approach" applied to the inverse obstacle problem for the heat equation. 2016. <hal-01366850v2>

Rapport7 documents

  • Laurent Baratchart, Laurent Bourgeois, Juliette Leblond. Uniqueness results for 2D inverse Robin problems with bounded coefficient. [Research Report] RR-8665, INRIA Sophia Antipolis; INRIA Saclay; INRIA. 2015. <hal-01104629>
  • Laurent Bourgeois. A remark on Lipschitz stability for inverse problems. [Research Report] RR-8104, INRIA. 2012. <hal-00741892>
  • Laurent Bourgeois, Nicolas Chaulet, Houssem Haddar. On simultaneous identification of a scatterer and its generalized impedance boundary condition. [Research Report] RR-7645, INRIA. 2011, pp.28. <inria-00599567>
  • Laurent Bourgeois, Nicolas Chaulet, Houssem Haddar. Identification of generalized impedance boundary conditions: some numerical issues. [Research Report] RR-7449, INRIA. 2010, pp.30. <inria-00534042v2>
  • Laurent Bourgeois. Conditional stability for ill-posed elliptic Cauchy problems : the case of $C^{1,1}$ domains (part I). [Research Report] RR-6585, INRIA. 2008. <inria-00302354>
  • Laurent Bourgeois, Houssem Haddar. Identification of generalized impedance boundary conditions in inverse scattering problems. [Research Report] RR-6786, INRIA. 2008, pp.27. <inria-00349258v2>
  • Laurent Bourgeois, Jérémi Dardé. Conditional stability for ill-posed elliptic Cauchy problems : the case of Lipschitz domains (part II). [Research Report] RR-6588, INRIA. 2008. <inria-00324166>