Number of documents

20

CV


Journal articles17 documents

  • Mohamed Malloug, Julien Royer. Energy Decay in a Wave Guide with Dissipation at Infinity. ESAIM: Control, Optimisation and Calculus of Variations, EDP Sciences, 2018, 24. ⟨hal-01328865v2⟩
  • Julien Royer. Local Energy Decay and Diffusive Phenomenon in a Dissipative Wave Guide. Journal of Spectral Theory, European Mathematical Society, 2018, 8 (3). ⟨hal-01259468⟩
  • Romain Joly, Julien Royer. Energy decay and diffusion phenomenon for the asymptotically periodic damped wave equation. Journal of the Mathematical Society of Japan, Maruzen Company Ltd, 2018, 70 (4). ⟨hal-01490420⟩
  • David Krejcirik, Nicolas Raymond, Julien Royer, Petr Siegl. Reduction of dimension as a consequence of norm-resolvent convergence and applications. Mathematika, University College London, 2018, 64 (2), pp.406-429. ⟨10.1112/S0025579318000013⟩. ⟨hal-01449405⟩
  • Julien Royer. Local decay for the damped wave equation in the energy space. Journal of the Institute of Mathematics of Jussieu, Cambridge University Press (CUP), 2018, 17 (3). ⟨hal-01158244⟩
  • David Krejcirik, Nicolas Raymond, Julien Royer, Petr Siegl. Non-accretive Schrödinger operators and exponential decay of their eigenfunctions. Israël Journal of Mathematics, The Hebrew University Magnes Press, 2017, 221 (2), pp.779-802. ⟨10.1007/s11856-017-1574-z⟩. ⟨hal-01310683⟩
  • Moez Khenissi, Julien Royer. Local energy decay and smoothing effect for the damped Schrödinger equation. Analysis & PDE, Mathematical Sciences Publishers, 2017, 10 (6). ⟨hal-01155498⟩
  • Isabella Ianni, Stefan Le Coz, Julien Royer. On the Cauchy problem and the black solitons of a singularly perturbed Gross-Pitaevskii equation. SIAM Journal on Mathematical Analysis, Society for Industrial and Applied Mathematics, 2017, 49 (2), pp.1060-1099. ⟨10.1137/15M1029606⟩. ⟨hal-01163000v3⟩
  • Julien Royer. Mourre's method for a dissipative form perturbation. Journal of Operator Theory, 2016, 16 (2). ⟨hal-01088162⟩
  • Julien Royer. Semiclassical measure for the solution of the Helmholtz equation with an unbounded source. Asymptotic Analysis, IOS Press, 2015, 91. ⟨hal-00784668⟩
  • Jean-Marc Bouclet, Julien Royer. Sharp low frequency resolvent estimates on asymptotically conical manifolds. Communications in Mathematical Physics, Springer Verlag, 2015, 335 (2). ⟨hal-00943287⟩
  • Julien Royer. Exponential decay for the Schrödinger equation on a dissipative waveguide. Annales Henri Poincaré, Springer Verlag, 2015, 16 (8). ⟨hal-00954688v2⟩
  • Jean-Marc Bouclet, Julien Royer. Local Energy Decay for the Damped Wave Equation. Journal of Functional Analysis, Elsevier, 2014, 266 (7), pp.Pages 4538-4615. ⟨10.1016/j.jfa.2014.01.028⟩. ⟨hal-00918736⟩
  • Julien Royer. Uniform resolvent estimates for a non-dissipative Helmholtz equation. Bulletin de la société mathématique de France, 2014, 142 (4), pp.591--633. ⟨hal-00578417⟩
  • Julien Royer. Limiting absorption principle for the dissipative Helmholtz equation. Communications in Partial Differential Equations, Taylor & Francis, 2010, 25 (8), p. 1458-1489. ⟨10.1080/03605302.2010.490287⟩. ⟨hal-00380641v2⟩
  • Julien Royer. Semiclassical measure for the solution of the dissipative Helmholtz equation. Journal of Differential Equations, Elsevier, 2010, 249 (11), p. 2703-2756. ⟨10.1016/j.jde.2010.07.004⟩. ⟨hal-00434327⟩
  • Florent Berthelin, Pierre Degond, Valérie Le Blanc, Salissou Moutari, Michel Rascle, et al.. A traffic-flow model with constraints for the modeling of traffic jams. Mathematical Models and Methods in Applied Sciences, World Scientific Publishing, 2008, 18 (suppl.), pp.1269-1298. ⟨10.1142/S0218202508003030⟩. ⟨hal-00634571⟩

Preprints, Working Papers, ...2 documents

  • Elek Csobo, François Genoud, Masahito Ohta, Julien Royer. Stability of Standing Waves for a Nonlinear Klein-Gordon Equation with Delta Potentials. 2018. ⟨hal-01890232⟩
  • Julien Royer. Energy decay for the Klein-Gordon equation with highly oscillating damping. 2017. ⟨hal-01583499⟩

Theses1 document

  • Julien Royer. Analyse haute fréquence de l'équation de Helmholtz dissipative. Mathématiques [math]. Université de Nantes, 2010. Français. ⟨tel-00578423⟩