Boaz Klartag, Joseph Lehec. Poisson processes and a log-concave Bernstein theorem. Studia Mathematica, INSTYTUT MATEMATYCZNY * POLSKA AKADEMIA NAUK, 2019, 1 (247), pp.85-107. ⟨10.4064/sm180212-30-7⟩. ⟨hal-01708514⟩
Sébastien Bubeck, Ronen Eldan, Joseph Lehec. Sampling from a log-concave distribution with Projected Langevin Monte Carlo. Discrete and Computational Geometry, Springer Verlag, 2018, 59 (4), pp.757-783. ⟨10.1007/s00454-018-9992-1⟩. ⟨hal-01428950⟩
Joseph Lehec. Regularization in L_1 for the Ornstein-Uhlenbeck semigroup. Annales de la Faculté des Sciences de Toulouse. Mathématiques., Université Paul Sabatier _ Cellule Mathdoc 2016, 25 (1), pp.191-204. ⟨10.5802/afst.1492⟩. ⟨hal-01428315⟩
Umut Caglar, Matthieu Fradelizi, Olivier Guédon, Joseph Lehec, Carsten Schütt, et al.. Functional Versions of Lp-Affine Surface Area and Entropy Inequalities. International Mathematics Research Notices, Oxford University Press (OUP), 2016, pp.1223-1250. ⟨10.1093/imrn/rnv151⟩. ⟨hal-01262626⟩
Joseph Lehec. Short Probabilistic Proof of the Brascamp-Lieb and Barthe Theorems. Bulletin canadien de mathématiques, 2014, 57, pp.585 - 597. ⟨10.4153/CMB-2013-040-x⟩. ⟨hal-01100925⟩
Joseph Lehec. Cover times and generic chaining. Journal of Applied Probability, Applied Probability Trust, 2014, 51, pp.247 - 261. ⟨10.1239/jap/1395771427⟩. ⟨hal-01100928⟩
Joseph Lehec. A stochastic formula for the entropy and applications. Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, Institute Henri Poincaré, 2013, 49 (3), pp.885-899. ⟨10.1214/11-AIHP464⟩. ⟨hal-00534442⟩
Joseph Lehec. Partitions and functional Santalo inequalities. Archiv der Mathematik, Springer Verlag, 2009, 92 (1), pp.89-94. ⟨10.1007/s00013-008-3014-0⟩. ⟨hal-00365767⟩
Joseph Lehec. A direct proof of the functional Santalo inequality. Comptes Rendus Mathématique, Elsevier Masson, 2009, 347, pp.55 - 58. ⟨10.1016/j.crma.2008.11.015⟩. ⟨hal-00365764⟩
Joseph Lehec. The symmetric property (\tau ) for the Gaussian measure. Annales de la Faculté des Sciences de Toulouse. Mathématiques., Université Paul Sabatier _ Cellule Mathdoc 2008, 17 (2), pp.357-370. ⟨10.5802/afst.1186⟩. ⟨hal-00365774⟩
Conference papers1 document
Emmanuel Boissard, Nathael Gozlan, Joseph Lehec, Christian Léonard, Georg Menz, et al.. Some recent developments in functional inequalities. Journées MAS 2012 - Concentration et application, Aug 2012, Clermont-Ferrand, France. pp.338-354, ⟨10.1051/proc/201444021⟩. ⟨hal-01273139⟩
Book sections5 documents
Djalil Chafai, Joseph Lehec. On Poincare and logarithmic Sobolev inequalities for a class of singular Gibbs measures. Geometric aspects of functional analysis. Israel seminar (GAFA) 2017–2019. Volume 1., pp.219-246, 2020, Lecture Notes in Mathematics 2256, 978-3-030-36019-1. ⟨10.1007/978-3-030-36020-7_10⟩. ⟨hal-01781502v3⟩
Ronen Eldan, James Lee, Joseph Lehec. Transport-entropy inequalities and curvature in discrete-space Markov chains. A journey through discrete mathematics, Springer, pp.391-406, 2018. ⟨hal-01428953⟩
Joseph Lehec. Borell's formula on a Riemannian manifold and applications. Carlen, E.; Madiman, M.; Werner, E. Convexity and Concentration, 161, Springer, pp.267-284, 2017, The IMA Volumes in Mathematics and its Applications. ⟨hal-01428968⟩
Ronen Eldan, Joseph Lehec. Bounding the Norm of a Log-Concave Vector Via Thin-Shell Estimates. Bo'az Klartag; Emanuel Milman. Geometric Aspect of Functional Analysis, 2116, Springer, pp.107 - 122, 2014, Lecture Notes in Mathematics, ⟨10.1007/978-3-319-09477-9_9⟩. ⟨hal-01100946⟩
Joseph Lehec. Moments of the Gaussian Chaos. C. Donati-Martin, A. Lejay et A. Rouault. Séminaire de Probabilités XLIII, Springer, pp.327-340, 2010, Lecture notes in mathematics, ⟨10.1007/978-3-642-15217-7_13⟩. ⟨hal-00453601⟩
Preprints, Working Papers, ...1 document
Ronen Eldan, Joseph Lehec, Yair Shenfeld. Stability of the logarithmic Sobolev inequality via the Föllmer Process. 2019. ⟨hal-02310499⟩
Theses1 document
Joseph Lehec. Inégalités géométriques et fonctionnelles. Mathématiques générales [math.GM]. Université Paris-Est, 2008. Français. ⟨NNT : 2008PEST0231⟩. ⟨tel-00365744v2⟩
Habilitation à diriger des recherches1 document
Joseph Lehec. Processus stochastiques, Convexité et Inégalités fonctionnelles. Probabilités [math.PR]. Université Paris-Dauphine, 2016. ⟨tel-01428644v2⟩