Nombre de documents

27

page HAL de John Guaschi


Laboratoire de Mathématiques Nicolas Oresme (LMNO) UMR CNRS 6139
Normandie Université
Université de Caen Normandie CS 14032
14032 Caen Cedex
5
France.

Ma page web au LMNO, ma liste complète de publications.


Article dans une revue18 documents

Ouvrage (y compris édition critique et traduction)1 document

  • Daciberg Gonçalves, John Guaschi. The classification of the virtually cyclic subgroups of the sphere braid groups. Springer. Springer, pp.112, 2013, SpingerBriefs in Mathematics, 978-3-319-00256-9. 〈10.1007/978-3-319-00257-6〉. 〈hal-00636830〉

Chapitre d'ouvrage1 document

Pré-publication, Document de travail7 documents

  • John Guaschi, Carolina De Miranda E Pereiro. The lower central and derived series of the braid groups of compact surfaces. 2018. 〈hal-01714012〉
  • Daciberg Lima Gonçalves, John Guaschi, Oscar Ocampo. Embeddings of finite groups in $B_n/\Gamma_k(P_n)$ for $k=2, 3$. 2018. 〈hal-01800722v2〉
  • John Guaschi, Daniel Juan-Pineda, Silvia Millán-López. The lower algebraic $K$-theory of virtually cyclic subgroups of the braid groups of the sphere and of $\mathbb{Z}[B_4(\mathbb{S}^2)]$. 73 pages, 6 figures; this new version contains a larger number of computations, and includes new .. 2018. 〈hal-00734244v2〉
  • Daciberg Lima Gonçalves, John Guaschi. The homotopy fibre of the inclusion $F_n(M) \longrightarrow \prod_{1}^{n} M$ for $M$ either $\mathbb{S}^2$ or $\mathbb{R}P^2$ and orbit configuration spaces. 2017. 〈hal-01627001〉
  • Daciberg Lima Gonçalves, John Guaschi, Oscar Ocampo. Almost-crystallographic groups as quotients of Artin braid groups. 2017. 〈hal-01800719v2〉
  • Daciberg Lima Gonçalves, John Guaschi, Vinicius Casteluber Laass. The Borsuk-Ulam property for homotopy classes of selfmaps of surfaces of Euler characteristic zero. 2016. 〈hal-01350615〉
  • Paolo Bellingeri, Eddy Godelle, John Guaschi. Exact sequences, lower central series and representations of surface braid groups. 23 pages, 4 figures. 2011. 〈hal-00603304〉