Mots-clés

Nom des revues

Identifiants chercheur

Nombre de documents

89

page HAL de Friedrich Wehrung


Article dans une revue77 documents

  • Luigi Santocanale, Friedrich Wehrung. Lattices of regular closed subsets of closure spaces. International Journal of Algebra and Computation (IJAC), 2014, 24 (7), pp.969--1030. <10.1142/S021819671450043X>. <hal-00836420v2>
  • Luigi Santocanale, Friedrich Wehrung. The extended permutohedron on a transitive binary relation. European Journal of Combinatorics, Elsevier, 2014, 42, pp.179--206. <10.1016/j.ejc.2014.06.004>. <hal-00750265v3>
  • Luigi Santocanale, Friedrich Wehrung. Varieties of lattices with geometric descriptions. Order, Springer Verlag, 2013, 30 (1), pp.13--38. <10.1007/s11083-011-9225-1>. <hal-00564024v2>
  • Luigi Santocanale, Friedrich Wehrung. Sublattices of associahedra and permutohedra. Advances in Applied Mathematics, Elsevier, 2013, 51 (3), pp.419--445. <10.1016/j.aam.2013.03.003>. <hal-00577258v4>
  • Friedrich Wehrung. Lifting defects for nonstable K_0-theory of exchange rings and C*-algebras. Algebras and Representation Theory, Springer Verlag, 2013, 16 (2), pp.553--589. <10.1007/s10468-011-9319-x>. <hal-00559268v2>
  • Friedrich Wehrung. Infinite combinatorial issues raised by lifting problems in universal algebra. Order, Springer Verlag, 2012, 29 (2), pp.381--404. <10.1007/s11083-011-9207-3>. <hal-00509814v2>
  • Pierre Gillibert, Friedrich Wehrung. An infinite combinatorial statement with a poset parameter. Combinatorica, Springer Verlag, 2011, 31 (2), pp.183--200. <10.1007/s00493-011-2602-y>. <hal-00364329v2>
  • Friedrich Wehrung. A non-coordinatizable sectionally complemented modular lattice with a large Jónsson four-frame. Advances in Applied Mathematics, Elsevier, 2011, 47 (1), pp.173--193. <10.1016/j.aam.2010.07.001>. <hal-00462951v2>
  • Friedrich Wehrung. Coordinatization of lattices by regular rings without unit and Banaschewski functions. Algebra Universalis, Springer Verlag, 2010, 64 (1), pp.49--67. <10.1007/s00012-010-0088-x>. <hal-00371268v2>
  • Friedrich Wehrung. Large semilattices of breadth three. Fundamenta Mathematicae, Instytut Matematyczny, Polskiej Akademii Nauk,, 2010, 208 (1), pp.1--21. <10.4064/fm208-1-1>. <hal-00272111v2>
  • Joao Araujo, Friedrich Wehrung. Embedding properties of endomorphism semigroups. Fundamenta Mathematicae, Instytut Matematyczny, Polskiej Akademii Nauk,, 2009, 202 (2), pp.125--146. <10.4064/fm202-2-2>. <hal-00206738v2>
  • Friedrich Wehrung. Poset representations of distributive semilattices. International Journal of Algebra and Computation, World Scientific Publishing, 2008, 18 (2), pp.321--356. <10.1142/S0218196708004469>. <hal-00016421v3>
  • Pere Ara, Francesc Perera, Friedrich Wehrung. Finitely generated antisymmetric graph monoids. Journal of Algebra, Elsevier, 2008, 320 (5), pp.1963--1982. <10.1016/j.jalgebra.2008.06.013>. <hal-00156906v2>
  • Friedrich Wehrung. Embedding coproducts of partition lattices. Acta Universitatis Szegediensis. Acta Scientiarum Mathematicarum, 2007, 73, pp.429--443. <hal-00175368v2>
  • Friedrich Wehrung. A solution to Dilworth's Congruence Lattice Problem. Advances in Mathematics, Elsevier, 2007, 216 (2), pp.610--625. <10.1016/j.aim.2007.05.016>. <hal-00016422v5>
  • Pavel Ruzicka, Jiri Tuma, Friedrich Wehrung. Distributive congruence lattices of congruence-permutable algebras. Journal of Algebra, Elsevier, 2007, 311 (1), pp.96--116. <10.1016/j.jalgebra.2006.11.005>. <hal-00004922v3>
  • Jiri Tuma, Friedrich Wehrung. Congruence lifting of diagrams of finite Boolean semilattices requires large congruence varieties. International Journal of Algebra and Computation, World Scientific Publishing, 2006, 16 (3), pp.541--550. <10.1142/S0218196706003049>. <hal-00003186>
  • Enrique Pardo, Friedrich Wehrung. Semilattices of groups and nonstable K-theory of extended Cuntz limits. K-Theory, Springer Verlag, 2006, 37, pp.1--23. <10.1007/s10977-006-0005-4>. <hal-00013765v2>
  • Friedrich Wehrung. Von Neumann coordinatization is not first-order. Journal of Mathematical Logic, World Scientific Publishing, 2006, 6 (1), pp.1--24. <10.1142/S0219061306000499>. <hal-00002843v3>
  • Friedrich Wehrung. A $K_0$-avoiding dimension group with an order-unit of index two. Journal of Algebra, Elsevier, 2006, 301 (2), pp.728--747. <10.1016/j.jalgebra.2005.06.003>. <hal-00004942v2>
  • Friedrich Wehrung. Lifting retracted diagrams with respect to projectable functors. Algebra Universalis, Springer Verlag, 2005, 54 (3), pp.349--371. <10.1007/s00012-005-1951-z>. <hal-00002855>
  • Friedrich Wehrung, Ken Goodearl, Enrique Pardo. Semilattices of groups and inductive limits of Cuntz algebras. Journal für die reine und angewandte Mathematik, Walter de Gruyter, 2005, 588, pp.1--25. <10.1515/crll.2005.2005.588.1>. <hal-00002856>
  • Friedrich Wehrung. Sublattices of complete lattices with continuity conditions. Algebra Universalis, Springer Verlag, 2005, 53, no. 2-3, pp.149--173. <10.1007/s00012-005-1878-4>. <hal-00003949>
  • Friedrich Wehrung. Distributive semilattices as retracts of ultraboolean ones; functorial inverses without adjunction. Journal of Pure and Applied Algebra, Elsevier, 2005, 202 (1--3), pp.201--229. <10.1016/j.jpaa.2005.02.009>. <hal-00002854v2>
  • Marina Semenova, Friedrich Wehrung. Sublattices of lattices of order-convex sets, III. The case of totally ordered sets. International Journal of Algebra and Computation, World Scientific Publishing, 2004, 14 (3), pp.357-387. <10.1142/S021819670400175X>. <hal-00003977>
  • Friedrich Wehrung. Semilattices of finitely generated ideals of exchange rings with finite stable rank. Transactions of the American Mathematical Society, American Mathematical Society, 2004, 356, no. 5, pp.1957-1970. <10.1090/S0002-9947-03-03369-5>. <hal-00003951>
  • Friedrich Wehrung, Marina Semenova. Sublattices of lattices of convex subsets of vector spaces. Algebra and Logic, Springer Verlag, 2004, 43 (no. 3 (May-June 2004)), pp.145--161. <10.1023/B:ALLO.0000028929.28946.d6>. <hal-00003955>
  • Marina Semenova, Friedrich Wehrung. Sublattices of lattices of order-convex sets, I. The main representation theorem. Journal of Algebra, Elsevier, 2004, 277 (2), pp.825--860. <10.1016/j.jalgebra.2004.01.023>. <hal-00003980>
  • Marina Semenova, Friedrich Wehrung. Sublattices of lattices of order-convex sets, II. Posets of finite length. International Journal of Algebra and Computation, World Scientific Publishing, 2003, 13 (5), pp.543--564. <10.1142/S0218196703001547>. <hal-00003979>
  • Friedrich Wehrung. Direct decompositions of non-algebraic complete lattices. Discrete Mathematics, Elsevier, 2003, 263 (1--3), pp.311-321. <10.1016/S0012-365X(02)00790-2>. <hal-00004019>
  • Kira Adaricheva, Friedrich Wehrung. Embedding finite lattices into finite biatomic lattices. Order, Springer Verlag, 2003, 20 (1), pp.31--48. <10.1023/A:1024463510392>. <hal-00004018>
  • Jiri Tuma, Friedrich Wehrung. Liftings of diagrams of semilattices by diagrams of dimension groups. Proceedings of the London Mathematical Society, London Mathematical Society, 2003, 87 (3), pp.1-28. <10.1112/S0024611502013941>. <hal-00004021>
  • Friedrich Wehrung. Forcing extensions of partial lattices. Journal of Algebra, Elsevier, 2003, 262 (1), pp.127--193. <10.1016/S0021-8693(03)00015-2>. <hal-00004025>
  • George Grätzer, Friedrich Wehrung. On the number of join-irreducibles in a congruence representation of a finite distributive lattice. Algebra Universalis, Springer Verlag, 2003, 49, pp.165-178. <10.1007/s00012-003-1733-4>. <hal-00004027>
  • Friedrich Wehrung. From join-irreducibles to dimension theory for lattices with chain conditions. Journal of Algebra and Its Applications, World Scientific Publishing, 2002, 1 (2), pp.1--28. <10.1142/S0219498802000148>. <hal-00004017>
  • Jiri Tuma, Friedrich Wehrung. A survey of recent results on congruence lattices of lattices. Algebra Universalis, Springer Verlag, 2002, 48 (4), pp.439--471. <10.1007/s000120200011>. <hal-00004020>
  • Friedrich Wehrung. Join-semilattices with two-dimensional congruence amalgamation. Colloquium Mathematicum, 2002, 93 (2), pp.209--235. <10.4064/cm93-2-2>. <hal-00004022>
  • Jiri Tuma, Friedrich Wehrung. Unsolvable one-dimensional lifting problems for congruence lattices of lattices. Forum Mathematicum, De Gruyter, 2002, 14 (4), pp.483--493. <10.1515/form.2002.022>. <hal-00004023>
  • Friedrich Wehrung. Solutions to five problems on tensor products of lattices and related matters. Algebra Universalis, Springer Verlag, 2002, 47, no. 4, pp.479-493. <10.1007/s00012-002-8200-5>. <hal-00004024>
  • Jiri Tuma, Friedrich Wehrung. Simultaneous representations of semilattices by lattices with permutable congruences. International Journal of Algebra and Computation, World Scientific Publishing, 2001, 11, no. 2, pp.217-246. <10.1142/S0218196701000516>. <hal-00004042>
  • George Grätzer, Friedrich Wehrung. A survey of tensor products and related constructions in two lectures. Algebra Universalis, Springer Verlag, 2001, 45 (2-3), pp.117-134. <10.1007/s00012-001-8155-y>. <hal-00004041>
  • Ken Goodearl, Friedrich Wehrung. Representations of distributive semilattices in ideal lattices of various algebraic structures. Algebra Universalis, Springer Verlag, 2001, 45, pp.71-102. <10.1007/s000120050203>. <hal-00004050>
  • Friedrich Wehrung. Representation of algebraic distributive lattices with $\aleph_1$ compact elements as ideal lattices of regular rings. Publicacions Matematiques (Barcelona), 2000, 44, no. 2, pp.419-435. <hal-00004026>
  • George Grätzer, Harry Lakser, Friedrich Wehrung. Congruence amalgamation of lattices. Acta Sci. Math. (Szeged), 2000, 66, pp.339-358. <hal-00004029>
  • George Grätzer, Friedrich Wehrung. The Strong Independence Theorem for automorphism groups and congruence lattices of arbitrary lattices. Advances in Applied Mathematics, Elsevier, 2000, 24 (3), pp.181-221. <10.1006/aama.1999.0661>. <hal-00004030>
  • Jean-François Caillot, Friedrich Wehrung. Finitely presented, coherent, and ultrasimplicial ordered abelian groups. Semigroup Forum, Springer Verlag, 2000, 61 (1), pp.116-137. <10.1007/PL00006008>. <hal-00004048>
  • George Grätzer, Friedrich Wehrung. Tensor products of semilattices with zero, revisited. Journal of Pure and Applied Algebra, Elsevier, 2000, 147 (3), pp.273--301. <10.1016/S0022-4049(98)00145-5>. <hal-00004051>
  • Friedrich Wehrung. Finitely presented and coherent ordered modules and rings. Communications in Algebra, Taylor & Francis, 1999, 27 (12), pp.5893--5919. <10.1080/00927879908826797>. <hal-00004049>
  • George Grätzer, Friedrich Wehrung. A new lattice construction: the box product. Journal of Algebra, Elsevier, 1999, 221 (1), pp.315--344. <10.1006/jabr.1999.7975>. <hal-00004044>
  • George Grätzer, Friedrich Wehrung. Tensor products and transferability of semilattices. Canadian Journal of Mathematics, University of Toronto Press, 1999, 51, pp.792--815. <10.4153/CJM-1999-034-6>. <hal-00004045>
  • George Grätzer, Friedrich Wehrung. The M_{3}[D] construction and n-modularity. Algebra Universalis, Springer Verlag, 1999, 41, no. 2, pp.87-114. <10.1007/s000120050102>. <hal-00004046>
  • George Grätzer, Friedrich Wehrung. Flat semilattices. Colloquium Mathematicum, 1999, 79, no. 2, pp.185-191. <hal-00004047>
  • George Grätzer, Friedrich Wehrung. Proper congruence-preserving extensions of lattices. Acta Mathematica Hungarica, Springer Verlag, 1999, 85 (1-2), pp.169-179. <10.1023/A:1006693517705>. <hal-00004053>
  • Friedrich Wehrung. A uniform refinement property for congruence lattices. Proceedings of the American Mathematical Society, American Mathematical Society, 1999, 127 (2), pp.363-370. <10.1090/S0002-9939-99-04558-X>. <hal-00004063>
  • Friedrich Wehrung. The dimension monoid of a lattice. Algebra Universalis, Springer Verlag, 1998, 40, no. 3, pp.247-411. <10.1007/s000120050091>. <hal-00004052v2>
  • Miroslav Ploscica, Jiri Tuma, Friedrich Wehrung. Congruence lattices of free lattices in non-distributive varieties. Colloquium Mathematicum, 1998, 76, no. 2, pp.269-278. <hal-00004064>
  • Friedrich Wehrung. Non-measurability properties of interpolation vector spaces. Israël Journal of Mathematics, The Hebrew University Magnes Press, 1998, 103 (1), pp.177--206. <10.1007/BF02762273>. <hal-00004065>
  • Friedrich Wehrung. Embedding simple commutative monoids into simple refinement monoids. Semigroup Forum, Springer Verlag, 1998, 56 (1), pp.104--129. <10.1007/s00233-002-7008-0>. <hal-00004373>
  • Friedrich Wehrung. Norm-closed intervals of norm-complete ordered abelian groups. Positivity, Springer Verlag, 1997, 1 (3), pp.271-290. <10.1023/A:1009712111747>. <hal-00004067>
  • Friedrich Wehrung. Monoids of intervals of ordered abelian groups. Journal of Algebra, Elsevier, 1996, 182, pp.287-328. <10.1006/jabr.1996.0172>. <hal-00004068>
  • Friedrich Wehrung. Tensor products of structures with interpolation. Pacific Journal of Mathematics, 1996, 176, no. 1, pp.267-285. <hal-00004374>
  • Friedrich Wehrung. A compactness property of Dedekind $\sigma$-complete f-rings. Algebra Universalis, Springer Verlag, 1996, 36 (4), pp.511-522. <10.1007/BF01233921>. <hal-00004655>
  • Friedrich Wehrung. Monotone sigma-complete groups with unbounded refinement. Fundamenta Mathematicae, Instytut Matematyczny, Polskiej Akademii Nauk,, 1996, 151, pp.177-187. <hal-00004375>
  • Friedrich Wehrung. Equational compactness of bi-frames and projection algebras. Algebra Universalis, Springer Verlag, 1995, 33 (4), pp.478-515. <10.1007/BF01225471>. <hal-00004209>
  • Friedrich Wehrung. Bounded countable atomic compactness of ordered groups. Fundamenta Mathematicae, Instytut Matematyczny, Polskiej Akademii Nauk,, 1995, 148, pp.101-116. <hal-00004657>
  • Friedrich Wehrung. Restricted injectivity, transfer property and decompositions of separative positively ordered monoids. Communications in Algebra, Taylor & Francis, 1994, 22 (5), pp.1747--1781. <10.1080/00927879408824934>. <hal-00004694>
  • Friedrich Wehrung. Treillis bi-locaux équationnellement compacts. Comptes rendus de l'Académie des sciences. Série I, Mathématique, Elsevier, 1994, 318, pp.5-9. <hal-00004678>
  • Friedrich Wehrung. The universal theory of ordered equidecomposability types semigroups. Canadian Journal of Mathematics, University of Toronto Press, 1994, 46 (5), pp.1093--1120. <10.4153/CJM-1994-062-3>. <hal-00004671>
  • R.M. Shortt, Friedrich Wehrung. Common extensions of semigroup-valued charges. Journal of Mathematical Analysis and applications, Elsevier, 1994, 187 (1), pp.235--258. <10.1006/jmaa.1994.1354>. <hal-00004679>
  • Friedrich Wehrung. Baire paradoxical decompositions need at least 6 pieces. Proceedings of the American Mathematical Society, American Mathematical Society, 1994, 121 (2), pp.643--644. <10.1090/S0002-9939-1994-1209101-9>. <hal-00004680>
  • Friedrich Wehrung. Boolean universes above Boolean models. The Journal of Symbolic Logic, Association for Symbolic Logic, 1993, 58, no. 4, pp.1219-1250. <hal-00004693>
  • Friedrich Wehrung. Metric properties of positively ordered monoids. Forum Mathematicum, De Gruyter, 1993, 5 (5), pp.183--201. <10.1515/form.1993.5.183>. <hal-00004710>
  • Friedrich Wehrung. Injective positively ordered monoids I. Journal of Pure and Applied Algebra, Elsevier, 1992, 83 (1), pp.43--82. <10.1016/0022-4049(92)90104-N>. <hal-00004711>
  • Friedrich Wehrung. Injective positively ordered monoids II. Journal of Pure and Applied Algebra, Elsevier, 1992, 83 (1), pp.83--100. <10.1016/0022-4049(92)90105-O>. <hal-00004712>
  • Friedrich Wehrung. Gerbes primitives. Comptes rendus de l'Académie des sciences. Série I, Mathématique, Elsevier, 1991, 313, pp.357-362. <hal-00004806>
  • Matthew Foreman, Friedrich Wehrung. The Hahn-Banach Theorem implies the existence of a non-Lebesgue measurable set. Fundamenta Mathematicae, Instytut Matematyczny, Polskiej Akademii Nauk,, 1991, 138, no. 1, pp.13-19. <hal-00004713>
  • Friedrich Wehrung. Théorème de Hahn-Banach et paradoxes continus ou discrets. Comptes rendus de l'Académie des sciences. Série I, Mathématique, Elsevier, 1990, 310, pp.303-306. <hal-00004714>

Communication dans un congrès1 document

  • Friedrich Wehrung. Non-extendability of semilattice-valued measures on partially ordered sets. 2006, Verlag Johannes Heyn, pp.191--200, 2006, Contributions to General Algebra 17, Klagenfurt 2006. <hal-00012068v2>

Ouvrage (y compris édition critique et traduction)2 documents

Direction d'ouvrage, Proceedings2 documents

Pré-publication, Document de travail7 documents

  • Patrick Dehornoy, Friedrich Wehrung. Multifraction reduction III: The case of interval monoids. 23 pages ; v2 : cross-references updated ; v3 : one example added, typos corrected; final version.. 2017. <hal-01338434v3>
  • Friedrich Wehrung. Spectral spaces of countable abelian lattice-ordered groups. Misprints v2: In Example 7.1, (a-mb)\wedge(b-mc) \leq 0 (i.e., \wedge instead of \vee). In Corol.. 2017. <hal-01431444v2>
  • Friedrich Wehrung. Real spectrum versus ℓ-spectrum via Brumfiel spectrum. 24 pages. Misprints v1: In the Abstract, the last (4) should be (5). In Proposition 4.3, spectra.. 2017. <hal-01550450v2>
  • Friedrich Wehrung. GCD-MONOIDS ARISING FROM HOMOTOPY GROUPOIDS. 29 pages. Here are a few misprints and oversights: Page 4, line 8, in the definition of the homo.. 2016. <hal-01338106v2>
  • Friedrich Wehrung. VARIETIES OF BOOLEAN INVERSE SEMIGROUPS. 27 pages. 2016. <hal-01386827>
  • Friedrich Wehrung. Relative projectivity and transferability for partial lattices. To appear in Order. 2015. <hal-01222118v2>
  • Luigi Santocanale, Friedrich Wehrung. The equational theory of the weak order on finite symmetric groups. 41 pages. A few bugs in the proofs of version 1 are corrected in version 2. 2014. <hal-00986148v2>