Skip to Main content
Number of documents


Publications Frédéric Charve

Journal articles15 documents

  • Frederic Charve. Enhanced convergence rates and asymptotics for a dispersive Boussinesq-type system with large ill-prepared data. Pure and Applied Analysis, Mathematical Sciences Publishers, 2020, 2 (2), pp.477-517. ⟨hal-02050137v3⟩
  • Frédéric Charve. Global well-posedness and asymptotics for a penalized Boussinesq-type system without dispersion. Communications in Mathematical Sciences, International Press, 2018, 16, pp.791-807. ⟨hal-01567310⟩
  • Frédéric Charve. Asymptotics and lower bound for the lifespan of solutions to the Primitive Equations. Acta Applicandae Mathematicae, Springer Verlag, In press. ⟨hal-01086979⟩
  • Cosmin Burtea, Frédéric Charve. Lagrangian methods for a general inhomogeneous incompressible Navier-Stokes-Korteweg system with variable capillarity and viscosity coefficients. SIAM Journal on Mathematical Analysis, Society for Industrial and Applied Mathematics, 2017, 49 (5), pp.3476-3495. ⟨hal-01390184⟩
  • Frederic Charve. A priori estimates for the 3D quasi-geostrophic system. Journal of Mathematical Analysis and Applications, Elsevier, 2016, 444 (2), pp.911-946. ⟨hal-01079858v2⟩
  • Frédéric Charve. Convergence of a low order non-local Navier-Stokes-Korteweg system: the order-parameter model. Asymptotic Analysis, IOS Press, 2016, 100 (3-4), pp.153-191. ⟨hal-00787268⟩
  • Frederic Charve. Local in time results for local and non-local capillary Navier-Stokes systems with large data. Journal of Differential Equations, Elsevier, 2014, 256 (7), pp.2152-2193. ⟨hal-00832509v2⟩
  • Frédéric Charve, Boris Haspot. Existence of global strong solution and vanishing capillarity-viscosity limit in one dimension for the Korteweg system. SIAM Journal on Mathematical Analysis, Society for Industrial and Applied Mathematics, 2013, 45 (2), pp.469-494. ⟨hal-00635983⟩
  • Frédéric Charve, Boris Haspot. On a Lagrangian method for the convergence from a non-local to a local Korteweg capillary fluid model. Journal of Functional Analysis, Elsevier, 2013, 265 (7), pp.1264-1323. ⟨hal-00787265⟩
  • Frédéric Charve, Boris Haspot. Existence of strong solutions in a larger space for the shallow-water system. Advances in Differential Equations, Khayyam Publishing, 2012, 17 (11-12), pp.1085-1114. ⟨hal-00776900⟩
  • Frederic Charve, Van-Sang Ngo. Global existence for the primitive equations with small anisotropic viscosity. Revista Matemática Iberoamericana, European Mathematical Society, 2011, 27 (1), pp.1--38. ⟨hal-00693001⟩
  • Frédéric Charve, Boris Haspot. Convergence of capillary fluid models: from the non-local to the local Korteweg model. Indiana University Mathematics Journal, Indiana University Mathematics Journal, 2011, 6, pp.2021-2060. ⟨hal-00778797⟩
  • Frederic Charve, Raphaël Danchin. A Global Existence Result for the Compressible Navier-Stokes Equations in the Critical L(p) Framework. Archive for Rational Mechanics and Analysis, Springer Verlag, 2010, 198 (1), pp.233--271. ⟨10.1007/s00205-010-0306-x⟩. ⟨hal-00693008⟩
  • Frederic Charve. Global well-posedness for the primitive equations with less regular initial data. Annales de la Faculté des Sciences de Toulouse. Mathématiques., Université Paul Sabatier _ Cellule Mathdoc 2008, XVII (2), pp.221-238. ⟨hal-00793679⟩
  • Frédéric Charve. Convergence of weak solutions for the primitive system of the quasigeostrophic equations. Asymptotic Analysis, IOS Press, 2005, 452, pp.173-209. ⟨hal-00021382⟩

Preprints, Working Papers, ...3 documents

  • Frederic Charve. Asymptotics for the rotating fluids and primitive systems with large ill-prepared initial data in critical spaces. 2022. ⟨hal-03636542⟩
  • Frédéric Charve. Sharper dispersive estimates and asymptotics for a Boussinesq-type system with larger ill-prepared initial data. 2020. ⟨hal-03009783v4⟩
  • Frédéric Charve, Raphaël Danchin, Jiang Xu. Gevrey analyticity and decay for the compressible Navier-Stokes system with capillarity. 2018. ⟨hal-01784033⟩

Theses1 document

  • Frédéric Charve. Study of dispersive phenomena in geophysical fluids mechanics. Mathematics [math]. Ecole Polytechnique X, 2004. English. ⟨tel-00008754⟩