Nombre de documents

10

CV de Francesco Fanelli


Article dans une revue5 documents

  • Francesco Fanelli. Highly rotating viscous compressible fluids in presence of capillarity effects. Mathematische Annalen, Springer Verlag, 2016, <10.1007/s00208-015-1358-x>. <hal-01300655>
  • Francesco Fanelli. Some local questions for hyperbolic systems with non-regular time dependent coefficients. Journal of Hyperbolic Differential Equations, World Scientific Publishing, 2016, Accepté pour publication. <hal-01249270v2>
  • Guy Metivier, Ferruccio Colombini, Daniele Del Santo, Francesco Fanelli. A well-posedness result for hyperbolic operators with Zygmund coefficients. Journal de Mathématiques Pures et Appliquées, Elsevier, 2013, 100, pp 455--475. <hal-00863695>
  • Francesco Fanelli. Conservation of geometric structures for non-homogeneous inviscid incompressible fluids. Communications in Partial Differential Equations, Taylor & Francis, 2012, 37 (9), pp.1553-1595. <hal-00733562>
  • Raphaël Danchin, Francesco Fanelli. The well-posedness issue for the density-dependent in endpoint Besov spaces. Journal de Mathématiques Pures et Appliquées, Elsevier, 2011, 96 (3), pp.253--278. <10.1016/j.matpur.2011.04.005>. <hal-00692810>

Direction d'ouvrage, Proceedings1 document

  • Francesco Fanelli. A note on viscous capillary fluids in fast rotation. Dipartimento di Matematica, Università di Bologna. France. 6 (1), pp.86-102, 2015, Bruno Pini Mathematical Analysis Seminar, <10.6092/issn.2240-2829/5892>. <hal-01251485>

Pré-publication, Document de travail4 documents

  • Ferruccio Colombini, Francesco Fanelli, Daniele Del Santo, Guy Metivier. A note on complete hyperbolic operators with log-Zygmund coefficients. 2013. <hal-00795817>
  • Francesco Fanelli, Xian Liao. The well-posedness issue in endpoint spaces for an inviscid low-Mach number limit system. 2013. <hal-00794055>
  • Ferruccio Colombini, Daniele Del Santo, Francesco Fanelli, Guy Metivier. Time dependent loss of derivatives for hyperbolic operators with non-regular coefficients. 2012. <hal-00733563>
  • Ferruccio Colombini, Daniele Del Santo, Francesco Fanelli, Guy Metivier. A well-posedness result for hyperbolic operators with Zygmund coefficients. À paraître dans "Journal de Mathématiques Pures et Appliquées", http://dx.doi.org/10.1016/j.matpu.. 2012. <hal-00733564>