Skip to Main content
Number of documents

51

Page de Fabien DURAND, enseignant-chercheur à l'UPJV


Bienvenue sur ma page web


Journal articles41 documents

  • Fabien Durand, Valérie Goyheneche. DECIDABILITY, ARITHMETIC SUBSEQUENCES AND EIGENVALUES OF MORPHIC SUBSHIFTS. Bulletin of the Belgian Mathematical Society - Simon Stevin, Belgian Mathematical Society, 2019, 26. ⟨hal-01917269v2⟩
  • Fabien Durand, Alexander Frank, Alejandro Maass. EIGENVALUES OF MINIMAL CANTOR SYSTEMS. Journal of the European Mathematical Society, European Mathematical Society, 2019, 21 (3), pp.727-775. ⟨10.4171/JEMS/849⟩. ⟨hal-02455347⟩
  • Valerie Berthe, Francesco Dolce, Fabien Durand, Julien Leroy, Dominique Perrin. Rigidity and Substitutive Dendric Words. International Journal of Foundations of Computer Science, World Scientific Publishing, 2018, 29 (05), pp.705-720. ⟨10.1142/S0129054118420017⟩. ⟨hal-02458711⟩
  • Fabien Durand, Nicholas Ormes, Samuel Petite. Self-Induced Systems. Journal d'analyse mathématique, Springer, 2018, ⟨10.1007/s11854-018-0051-x⟩. ⟨hal-01222522⟩
  • Fabien Durand, Julien Leroy. The Constant of Recognizability is Computable for Primitive Morphisms. Journal of Integer Sequences, University of Waterloo, 2017. ⟨hal-02455378⟩
  • Sebastian Donoso, Fabien Durand, Alejandro Maass, Samuel Petite. On automorphism groups of Toeplitz subshifts *. Discrete Analysis, Alliance of Diamond Open Access Journals, 2017, 19, ⟨10.19086/da.1832⟩. ⟨hal-02455371⟩
  • Sebastian Donoso, Fabien Durand, Alejandro Maass, Samuel Petite. ON AUTOMORPHISM GROUPS OF LOW COMPLEXITY MINIMAL SUBSHIFTS. Ergodic Theory and Dynamical Systems, Cambridge University Press (CUP), 2016. ⟨hal-01076427⟩
  • Maria Isabel Cortez, Fabien Durand, Samuel Petite. EIGENVALUES AND STRONG ORBIT EQUIVALENCE.. Ergodic Theory and Dynamical Systems, Cambridge University Press (CUP), 2016, ⟨10.1017/etds.2015.26⟩. ⟨hal-01053638⟩
  • Fabien Durand, Alexander Frank, Alejandro Maass. Eigenvalues of Toeplitz minimal systems of finite topological rank. Ergodic Theory and Dynamical Systems, Cambridge University Press (CUP), 2015, 30 p. ⟨10.1017/etds.2014.45⟩. ⟨hal-01180247⟩
  • Fabien Durand, Julien Leroy, Gwenaël Richomme. Do the Properties of an S-adic Representation Determine Factor Complexity?. Journal of Integer Sequences, University of Waterloo, 2013, 16 (2), pp.Art 13.2.6. ⟨lirmm-00797654⟩
  • Fabien Durand. Decidability of the HD0L ultimate periodicity problem. RAIRO - Theoretical Informatics and Applications (RAIRO: ITA), EDP Sciences, 2013. ⟨hal-00640990v3⟩
  • Fabien Durand. Decidability of uniform recurrence of morphic sequences. International Journal of Foundations of Computer Science, World Scientific Publishing, 2013. ⟨hal-00690883v2⟩
  • Fabien Durand, Michel Rigo. Multidimensional extension of the Morse--Hedlund theorem. European Journal of Combinatorics, Elsevier, 2013. ⟨hal-00626725v2⟩
  • Fabien Durand. HD0L $\omega$-equivalence and periodicity problems in the primitive case (to the memory of G. Rauzy). Uniform Distribution Theory, Mathematical Institute of the Slovak Academy of Sciences, 2012. ⟨hal-00637324⟩
  • Fabien Durand, Julien Leroy. $S$-adic conjecture and Bratteli diagrams. Comptes Rendus Mathématique, Elsevier Masson, 2012. ⟨hal-00738286⟩
  • Fabien Durand, Ali Messaoudi. Boundary of the Rauzy fractal sets in $\RR \times \CC$ generated by $P(x)=x^4-x^3-x^2-x-1$. Osaka Journal of Mathematics, Osaka University, 2011. ⟨hal-00293932v2⟩
  • Fabien Durand. Cobham's theorem for substitutions. Journal of the European Mathematical Society, European Mathematical Society, 2011. ⟨hal-00527622⟩
  • Maria Isabel Cortez, Fabien Durand, Samuel Petite. Linearly repetitive Delone systems have a finite number of non periodic Delone system factors. Proceedings of the American Mathematical Society, American Mathematical Society, 2010. ⟨hal-00300649⟩
  • Xavier Bressaud, Fabien Durand, Alejandro Maass. On the eigenvalues of finite rank Bratteli-Vershik dynamical systems. Ergodic Theory and Dynamical Systems, Cambridge University Press (CUP), 2010, pp.26. ⟨hal-00723847⟩
  • Etienne Dague, Rajaa Bitar, Hubert Ranchon, Fabien Durand, Hélène Martin-Yken, et al.. An atomic force microscopy analysis of yeast mutants defective in cell wall architecture. Yeast, Wiley, 2010, 27 (8), pp.673-684. ⟨10.1002/yea.1801⟩. ⟨hal-02937501⟩
  • Fabien Durand, Frédéric Paccaut. Minimal polynomial dynamics on the set of 3-adic integers. Bulletin of the London Mathematical Society, London Mathematical Society, 2009, ⟨10.1112/blms/bdp003⟩. ⟨hal-00723402⟩
  • Fabien Durand, Michel Rigo. Syndeticity and independent substitutions. Advances in Applied Mathematics, Elsevier, 2009, pp.1-22. ⟨hal-00407667⟩
  • Maria Isabel Cortez, Fabien Durand. Self-similar tiling systems, topological factors and stretching factors. Discrete and Computational Geometry, Springer Verlag, 2008. ⟨hal-00201237⟩
  • Fabien Durand. Cobham-Semenov theorem and $\NN^d$-subshifts. Theoretical Computer Science, Elsevier, 2008. ⟨hal-00201211⟩
  • Jr Chazottes, Fabien Durand. Local rates of Poincare recurrence for rotations and weak mixing. Discrete and Continuous Dynamical Systems - Series A, American Institute of Mathematical Sciences, 2005. ⟨hal-00724804⟩
  • Xavier Bressaud, Fabien Durand, Alejandro Maass. Necessary and sufficient conditions to be an eigenvalue for linearly recurrent dynamical Cantor systems. Journal of the London Mathematical Society, London Mathematical Society, 2005, 72 (3), pp.799-816. ⟨hal-00224277⟩
  • Fabien Durand, Adel Guerziz, Michel Koskas. Words and morphisms with Sturmian erasures. Bulletin of the Belgian Mathematical Society, 2004, 11 (4), pp.575-588. ⟨hal-00201886⟩
  • François Blanchard, Fabien Durand, Alejandro Maass. Constant-length substitutions and countable scrambled sets. Nonlinearity, IOP Publishing, 2004, 17, pp.817-833. ⟨hal-00309506⟩
  • Fabien Durand, Alejandro Maass. A note on limit laws for minimal Cantor systems with infinite periodic spectrum. Discrete and Continuous Dynamical Systems - Series A, American Institute of Mathematical Sciences, 2003, 9 (3), pp.745-750. ⟨10.3934/dcds.2003.9.745⟩. ⟨hal-02465499⟩
  • Maria Isabel Cortez, Fabien Durand, Bernard Host, Alejandro Maass. Continuous and measurable eigenfunctions of linearly recurrent dynamical Cantor systems. Journal of the London Mathematical Society, London Mathematical Society, 2003, 67 (3), pp.790-804. ⟨hal-00224189⟩
  • Fabien Durand. Corrigendum and addendum to: Linearly recurrent subshifts have a finite number of non-periodic factors. Ergodic Theory and Dynamical Systems, Cambridge University Press (CUP), 2003, 23, pp.663-669. ⟨hal-00309505⟩
  • Fabien Durand. A theorem of Cobham for non-primitive substitutions. Acta Arithmetica, Instytut Matematyczny PAN, 2002, 104 (3), pp.225-241. ⟨hal-00202073⟩
  • Tomasz Downarowicz, Fabien Durand. Factors of Toeplitz flows and other almost 1-1 extensions over group rotations. Mathematica Scandinavica, 2002, 16 p. ⟨hal-01180293⟩
  • Fabien Durand, Dominique Schneider. Ergodic averages with deterministic weights. Annales de l'Institut Fourier, Association des Annales de l'Institut Fourier, 2002, 52, pp.561-583. ⟨hal-00308799⟩
  • Fabien Durand, Alejandro Maass. Limit laws of entrance times for low complexity Cantor minimal systems. Nonlinearity, IOP Publishing, 2001, 14, pp.683-700. ⟨hal-00309040⟩
  • Pablo Dartnell,, Fabien Durand, Alejandro Maass. Orbit Equivalence and Kakutani equivalence with Sturmian Subshifts. Studia Mathematica, INSTYTUT MATEMATYCZNY * POLSKA AKADEMIA NAUK, 2000, 21 p. ⟨hal-01180295⟩
  • Fabien Durand. Linearly recurrent subshifts have a finite number of non-periodic subshift factors. Ergodic Theory and Dynamical Systems, Cambridge University Press (CUP), 2000, 20, pp.1061-1078. ⟨hal-00306716⟩
  • Fabien Durand, Bernard Host, Christian Skau. Substitutional dynamical systems, Bratteli diagrams and dimension groups. Ergodic Theory and Dynamical Systems, Cambridge University Press (CUP), 1999, 19, pp.953-993. ⟨hal-00304369⟩
  • Fabien Durand. Sur les ensembles d'entiers reconnaissables. Journal de Théorie des Nombres de Bordeaux, Société Arithmétique de Bordeaux, 1998, 10, pp.65-84. ⟨hal-00201163⟩
  • Fabien Durand. A characterization of substitutive sequences using return words. Discrete Mathematics, Elsevier, 1998, 179, pp.89-101. ⟨hal-00303319⟩
  • Fabien Durand. A generalization of Cobham's Theorem. Theory of Computing Systems, Springer Verlag, 1998, 31, pp.169-185. ⟨hal-00303322⟩

Book sections3 documents

  • José Aliste-Prieto, Daniel Coronel, Maria Isabel Cortez, Fabien Durand, Samuel Petite. Linearly Repetitive Delone Sets. Mathematics of Aperiodic Order, 37, pp.195-222, 2015, ⟨10.1007/978-3-0348-0903-0_6⟩. ⟨hal-02463104⟩
  • Fabien Durand, Michel Rigo. On Cobham's theorem. Automata: from Mathematics to Applications, European Math. Soc., 2011. ⟨hal-00605375⟩
  • Fabien Durand. Combinatorics on Bratteli diagrams and dynamical systems. Combinatorics, Automata and Number Theory, 2010. ⟨hal-02465482⟩

Preprints, Working Papers, ...5 documents

  • Sebastian Donoso, Fabien Durand, Alejandro Maass, Samuel Petite. Interplay between finite topological rank minimal Cantor systems, $\mathcal S$-adic subshifts and their complexity. 2020. ⟨hal-02509588⟩
  • Fabien Durand, Julien Leroy. Decidability of the isomorphism and the factorization between minimal substitution subshifts. 2020. ⟨hal-02461469⟩
  • Samuel Petite, Fabien Durand. CONJUGACY OF UNIMODULAR PISOT SUBSTITUTIONS SUBSHIFTS TO DOMAIN EXCHANGES. 2020. ⟨hal-01053723v3⟩
  • Valerie Berthe, P Cecchi Bernales, Fabien Durand, J Leroy, Dominique Perrin, et al.. ON THE DIMENSION GROUP OF UNIMODULAR S-ADIC SUBSHIFTS. 2020. ⟨hal-02366494v2⟩
  • Fabien Durand, Julien Leroy, Gwenaël Richomme. Towards a statement of the S-adic conjecture through examples. 2012. ⟨hal-00724788⟩

Videos2 documents

  • Fabien Durand, Fanny Bastien, Vanille Beaumont. Fabien Durand - Sur le Théorème de Cobham (Part 1) : École d’été 2013 - Théorie des nombres et dynamique. 2013. ⟨medihal-01319322⟩
  • Fabien Durand, Fanny Bastien, Vanille Beaumont. Fabien Durand - Sur le Théorème de Cobham (Part 2) : École d’été 2013 - Théorie des nombres et dynamique. 2013. ⟨medihal-01319329⟩