Nombre de documents

25

CV de Emil Ernst


Pré-publication, Document de travail3 documents

  • Emil Ernst. CLOSED MEANS CONTINUOUS IFF POLYHEDRAL: A CONVERSE OF THE GKR THEOREM. 2011. <hal-00652630>
  • Emil Ernst, Michel Volle. ZERO DUALITY GAP FOR CONVEX PROGRAMS: A GENERAL RESULT. 2011. <hal-00652631>
  • Emil Ernst, Michel Volle. CONTINUOUS CONVEX SETS AND ZERO DUALITY GAP FOR CONVEX PROGRAMS. 2011. <hal-00652632>

Article dans une revue21 documents

  • Emil Ernst, Michel Volle. Zero Duality Gap and Attainment with Possibly Non-Convex Data. Journal of Convex Analysis, Heldermann, 2016, 23 (2), pp.615-629. <hal-01481759>
  • Emil Ernst, Michel Volle. Generic Hahn–Banach results. Journal of Mathematical Analysis and Applications, 2014, 420 (1), pp.137-144. <10.1016/j.jmaa.2014.05.075>. <hal-01118526>
  • Emil Ernst, M Volle. Generic Hahn–Banach results. Journal of Mathematical Analysis and applications, Elsevier, 2014, <10.1016/j.jmaa.2014.05.075>. <hal-01334895>
  • N. Dinh, Emil Ernst, M. A. Lopez, Michel Volle. An Approxiamate Hahn-Banach Theorem for positively homogeneous functions.. Optimization, Taylor & Francis, 2014. <hal-01326222>
  • Emil Ernst. The image of a closed convex set under a Fredholm operator. Journal of Functional Analysis, Elsevier, 2014, 267 (11), pp.4431-4445. <10.1016/j.jfa.2014.09.007>. <hal-01118511>
  • Emil Ernst, Michel Volle. Zero Duality Gap for Convex Programs: A Generalization of the Clark–Duffin Theorem. Journal of Optimization Theory and Applications, Springer Verlag, 2013, 158 (3), <10.1007/s10957-013-0287-7>. <hal-01271973>
  • Emil Ernst. A converse of the Gale-Klee-Rockafellar theorem: Continuity of convex functions at the boundary of their domains. Proceedings of the American Mathematical Society, American Mathematical Society, 2013, 141 (10), <10.1090/S0002-9939-2013-11643-6>. <hal-01271975>
  • Emil Ernst, Michel Volle. Generalized Courant–Beltrami penalty functions and zero duality gap for conic convex programs. Positivity, Springer Verlag, 2013, 17 (4), <10.1007/s11117-012-0214-4>. <hal-01271969>
  • Emil Ernst, Michel Théra. Minimizing Irregular Convex Functions: Ulam Stability for Approximate Minima. Set-Valued and Variational Analysis, Springer, 2010, 18 (3-4), pp.447-466. <10.1007/s11228-010-0153-9>. <hal-00586945>
  • Emil Ernst, Michel Volle. When is a convex cone the cone of all the half-lines contained in a convex set?. Journal of Convex Analysis, Heldermann, 2009, 16 (3), pp.749-766. <hal-00819389>
  • Emil Ernst, Michel Théra. On the necessity of the Moreau-Rockafellar-Robinson qualification condition in Banach spaces. Mathematical Programming B, Springer, 2009, 117 (1-2), pp.149-161. <hal-00356498>
  • Emil Ernst, Michel Théra. A converse to the Lions-Stampacchia Theorem. ESAIM: Control, Optimisation and Calculus of Variations, EDP Sciences, 2009, 15 (4), pp.810-817. <hal-00336376>
  • Emil Ernst, Michel Théra. Slice-continuous sets in reflexive Banach spaces: some complements. Set-Valued Analysis, Springer Verlag, 2008, 16 (2-3), pp.307-318. <hal-00336377>
  • Emil Ernst, Michel Théra. Boundary Half-Strips and the Strong CHIP. SIAM Journal on Optimization, Society for Industrial and Applied Mathematics, 2007, 18 (3), pp.834-852. <10.1137/060658047>. <hal-00819400>
  • Emil Ernst, Michel Théra, Michel Volle. Optimal boundedness criteria for extended-real-valued functions. Optimization, Taylor & Francis, 2007, 56 (3), pp.323-338. <hal-00201291>
  • Emil Ernst, Michel Théra. Global maximum of a convex function: necessary and sufficient conditions. Journal of Convex Analysis, Heldermann, 2006, 13, p.687-694 n°3-4. <hal-00129241>
  • Emil Ernst, Michel Théra, Constantin Zalinescu. Slice-continuous sets in reflexive Banach spaces. Journal of Functional Analysis, Elsevier, 2005, 223/1, pp.179-203. <hal-00068959>
  • Emil Ernst, Michel Théra. A converse to the Eidelheit theorem in real Hilbert spaces. Bulletin des Sciences Mathématiques, Elsevier, 2005, 129, pp.381-397. <hal-00068998>
  • Samir Adly, Emil Ernst, Michel Théra. Well-positioned Closed Convex Sets and Well-positioned Closed Convex Functions. Journal of Global Optimization, Springer Verlag, 2004, 29, pp.337-351. <hal-00068258>
  • Samir Adly, Emil Ernst, Michel Théra. Norm Closure of the Barrier Cone in Normed Linear Spaces. Proceedings of the American Mathematical Society, American Mathematical Society, 2004, pp.2911-2915. <10.1090/S0002-9939-04-07492-1>. <hal-00068253>
  • Samir Adly, Emil Ernst, Michel Théra. A characterization of convex and semicoercive functionals. Journal of Convex Analysis, Heldermann, 2001, 8, pp.127-148. <hal-00068956>

Chapitre d'ouvrage1 document

  • Emil Ernst, Michel Théra. Continuous sets and non-attaining functionals in reflexive Banach spaces. Giannessi F. Maugeri A. Variational Analysis and Applications, Springer, pp.343-357, 2005, Nonconvex Optimization and its Applications. <hal-00069051>