Mots-clés

Nombre de documents

45

Eliane Becache


http://uma.ensta-paristech.fr/~becache


Article dans une revue25 documents

  • Eliane Bécache, Patrick Joly, Maryna Kachanovska. Stable Perfectly Matched Layers for a Cold Plasma in a Strong Background Magnetic Field . Journal of Computational Physics, Elsevier, 2017, 341, pp.76-101. 〈10.1016/j.jcp.2017.03.051〉. 〈hal-01397581〉
  • Eliane Bécache, Maryna Kachanovska. Stable perfectly matched layers for a class of anisotropic dispersive models. Part I: Necessary and sufficient conditions of stability: Extended Version. ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, In press. 〈hal-01356811v2〉
  • Eliane Bécache, Laurent Bourgeois, Lucas Franceschini, Jérémi Dardé. Application of mixed formulations of quasi-reversibility to solve ill-posed problems for heat and wave equations: the 1d case. Inverse Problems and Imaging , AIMS American Institute of Mathematical Sciences, 2015, 〈10.3934/ipi.2015.9.971〉. 〈hal-01235099〉
  • Eliane Bécache, Patrick Joly, Maryna Kachanovska, Valentin Vinoles. Perfectly matched layers in negative index metamaterials and plasmas. ESAIM: Proceedings, EDP Sciences, 2015, Vol. 50, p. 113-132. 〈10.1051/proc/201550006〉. 〈hal-01082445v4〉
  • Eliane Bécache, Andrés Prieto. Remarks on the stability of Cartesian PMLs in corners. Applied Numerical Mathematics, Elsevier, 2012, 62 (11), pp.1639-1653. 〈10.1016/j.apnum.2012.05.003〉. 〈hal-00973536〉
  • Thomas Hagstrom, Eliane Bécache, Dan Givoli, Kurt Stein. Complete Radiation Boundary Conditions for Convective Waves. Communications in Computational Physics, Global Science Press, 2012, 11 (2), pp.610-628. 〈10.4208/cicp.231209.060111s〉. 〈hal-00969307〉
  • Eliane Bécache, Dan Givoli, Thomas Hagstrom. High-order Absorbing Boundary Conditions for anisotropic and convective wave equations. Journal of Computational Physics, Elsevier, 2010, 229 (4), pp.1099-1129. 〈10.1016/j.jcp.2009.10.012〉. 〈hal-00873063〉
  • Daniel Rabinovich, Dan Givoli, Eliane Bécache. Comparison of High-Order Absorbing Boundary Conditions and Perfectly Matched Layers in the Frequency Domain. International Journal for Numerical Methods in Biomedical Engineering, John Wiley and Sons, 2010, 26, pp.1351-1369. 〈hal-00974876〉
  • Eliane Bécache, Jerónimo Rodríguez, Chrysoula Tsogka. Convergence results of the fictitious domain method for a mixed formulation of the wave equation with a Neumann boundary condition. ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2009, 43 (2), pp.377-398. 〈10.1051/m2an:2008047〉. 〈hal-00873073〉
  • Eliane Bécache, Jerónimo Rodríguez, Chrysoula Tsogka. A fictitious domain method with mixed finite elements for elastodynamics. SIAM Journal on Scientific Computing, Society for Industrial and Applied Mathematics, 2007, 29 (3), pp.1244-1267. 〈10.1137/060655821〉. 〈hal-00876222〉
  • Eliane Bécache, Anne-Sophie Bonnet-Ben Dhia, Guillaume Legendre. Perfectly matched layers for time-harmonic acoustics in the presence of a uniform flow. SIAM Journal on Numerical Analysis, Society for Industrial and Applied Mathematics, 2006, 44 (3), pp.1191-1217. 〈10.1137/040617741〉. 〈hal-00876236〉
  • Eliane Bécache, Aleksei Kiselev. Non-stationary elastic wavefields from an apodized normal transducer. Near-field asymptotics and numerics. Acta Acustica united with Acustica, Hirzel Verlag, 2005, 91 (5), pp.822-830. 〈hal-00982677〉
  • Eliane Bécache, Grégoire Derveaux, Patrick Joly. An efficient numerical method for the resolution of the Kirchhoff-Love dynamic plate equation. Numerical Methods for Partial Differential Equations, Wiley, 2005, 21 (2), pp.323 - 348. 〈10.1002/num.20041〉. 〈hal-00982754〉
  • Eliane Bécache, Patrick Joly, Jerónimo Rodríguez. Space-time mesh refinement for elastodynamics. Numerical results. Computer Methods in Applied Mechanics and Engineering, Elsevier, 2005, 194, pp.355-366. 〈10.1016/j.cma.2004.02.023〉. 〈hal-00983048〉
  • Eliane Bécache, Antoine Chaigne, Grégoire Derveaux, Patrick Joly. Numerical simulation of a guitar. Computers and Structures, Elsevier, 2005, Advances in Analysis of Fluid Structure Interaction, 83 (2-3), pp.107-126. 〈10.1016/j.compstruc.2004.04.018〉. 〈hal-00982757〉
  • Arghyro Paouri, Eliane Bécache, Antoine Chaigne, Grégoire Derveaux, Patrick Joly. Modélisation numérique de la guitare acoustique. Interstices, INRIA, 2004. 〈hal-01350319〉
  • Eliane Bécache, Anne-Sophie Bonnet-Ben Dhia, Guillaume Legendre. Perfectly matched layers for the convected Helmholtz equation. SIAM Journal on Numerical Analysis, Society for Industrial and Applied Mathematics, 2004, 42 (1), pp.409-433. 〈10.1137/s0036142903420984〉. 〈hal-00876246〉
  • Eliane Bécache, Peter Petropoulos, Stephen Gedney. On the long-time behavior of unsplit Perfectly Matched Layers. IEEE Transactions on Antennas and Propagation, Institute of Electrical and Electronics Engineers, 2004, 52 (5), 〈10.1109/TAP.2004.827253〉. 〈hal-00983551〉
  • Eliane Bécache, Abdelaaziz Ezziani, Patrick Joly. A mixed finite element approach for viscoelastic wave propagation.. Computational Geosciences, Springer Verlag, 2004, 8 (3), pp.255-299. 〈10.1007/s10596-005-3772-8〉. 〈hal-00983573〉
  • Eliane Bécache, Sandrine Fauqueux, Patrick Joly. Stability of perfectly matched layers, group velocities and anisotropic waves.. Journal of Computational Physics, Elsevier, 2003, 188 (2), pp.399-433. 〈10.1016/S0021-9991(03)00184-0〉. 〈hal-00989051〉
  • Eliane Bécache, Antoine Chaigne, Grégoire Derveaux, Patrick Joly. Time-domain simulation of a guitar : Model and method. Journal of the Acoustical Society of America, Acoustical Society of America, 2003, 114 (6), pp.3368 - 3383. 〈10.1121/1.1629302〉. 〈hal-00989042〉
  • Eliane Bécache, Patrick Joly, Chrysoula Tsogka. A new family of mixed finite elements for the linear elastodynamic problem. SIAM Journal on Numerical Analysis, Society for Industrial and Applied Mathematics, 2002, 39 (6), pp.2109-2132. 〈10.1137/S0036142999359189〉. 〈hal-00990102〉
  • Eliane Bécache, Patrick Joly. On the analysis of Bérenger's perfectly matched layers for Maxwell's equations. ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2002, 36 (1), pp.87-119. 〈10.1051/m2an:2002004〉. 〈hal-00990161〉
  • Eliane Bécache, Patrick Joly, C Tsogka. An analysis of new mixed finite elements for the approximation of wave propagation problems. SIAM Journal on Numerical Analysis, Society for Industrial and Applied Mathematics, 2000, 37 (4), pp.1053-1084. 〈10.1137/S0036142998345499〉. 〈hal-01856337〉
  • Eliane Bécache, Francis Collino, Patrick Joly. Higher-order variational finite difference schemes for solving 3-D paraxial wave equations using splitting techniques. Wave Motion, Elsevier, 2000, 〈10.1016/S0165-2125(99)00038-4〉. 〈hal-01856321〉

Communication dans un congrès2 documents

Chapitre d'ouvrage2 documents

  • Eliane Bécache, Jerónimo Rodríguez Garcia, Chrysoula Tsogka. The fictitious domain method and applications in wave propagation. COMPDYN 2009, ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, M. Papadrakakis, N.D. Lagaros, M. Fragiadakis (eds.), 2009. 〈hal-01853643〉
  • Eliane Bécache, Patrick Joly, Jeronimo Rodriguez. A dual-primal coupling technique with local time step for wave propagation problems. Eccomas thematic conference/ COUPLED PROBLEMS 2005 M. Papadrakakis, E. Onate and B. Schrefler (Eds) CIMNE, Barcelona, 2005, 2005. 〈hal-01853635〉

Pré-publication, Document de travail1 document

  • Eliane Bécache, Patrick Joly, Valentin Vinoles. On the analysis of perfectly matched layers for a class of dispersive media and application to negative index metamaterials. 2016. 〈hal-01327315v3〉

Rapport13 documents

  • Eliane Bécache, Andres Prieto. Remarks on the stability of Cartesian PMLs in corners. [Research Report] RR-7620, INRIA. 2011, pp.18. 〈inria-00593182〉
  • Eliane Bécache, J. Rodríguez, Chrysoula Tsogka. On the convergence of the fictitious domain method for wave equation problems. [Research Report] RR-5802, INRIA. 2006, pp.37. 〈inria-00070222〉
  • Eliane Bécache, Anne-Sophie Bonnet-Ben Dhia, Guillaume Legendre. Perfectly matched layers for time-harmonic acoustics in the presence of a uniform flow. [Research Report] RR-5486, INRIA. 2005, pp.35. 〈inria-00070521〉
  • Eliane Bécache, Abdelaâziz Ezziani, Patrick Joly. Modélisation de la propagation d'ondes dans les milieux viscoélastiques linéaires II : Analyse numérique. [Rapport de recherche] RR-5159, INRIA. 2004. 〈inria-00077046〉
  • Eliane Bécache, Abdelaâziz Ezziani, Patrick Joly. Modélisation de la propagation d'ondes dans les milieux viscoélastiques linéaires : I. Analyse mathématique. [Rapport de recherche] RR-4785, INRIA. 2003. 〈inria-00071801〉
  • Eliane Bécache, Anne-Sophie Bonnet-Ben Dhia, Guillaume Legendre. Perfectly matched layers for the convected Helmholtz equation. [Research Report] RR-4690, INRIA. 2003. 〈inria-00071896〉
  • Eliane Bécache, Peter G. Petropoulos, Stephen Gedney. On the long-time behavior of unsplit Perfectly Matched Layers. [Research Report] RR-4538, INRIA. 2002. 〈inria-00072050〉
  • Eliane Bécache, Sandrine Fauqueux, Patrick Joly. Stability of Perfectly Matched Layers, Group Velocities and Anisotropic Waves. [Research Report] RR-4304, INRIA. 2001. 〈inria-00072283〉
  • Eliane Bécache, Patrick Joly. On the analysis of Bérenger's Perfectly Matched Layers for Maxwell's equations. [Research Report] RR-4164, INRIA. 2001. 〈inria-00072458〉
  • Eliane Bécache, Patrick Joly, Chrysoula Tsogka. Fictitious Domains, Mixed Finite Elements and Perfectly Matched Layers for 2D Elastic Wave Propagation. [Research Report] RR-3889, INRIA. 2000. 〈inria-00072764〉
  • Eliane Bécache, Patrick Joly, Chrysoula Tsogka. Mixed Finite Elements, Strong Symmetry and Mass Lumping for Elastic Waves. [Research Report] RR-3717, INRIA. 1999. 〈inria-00072950〉
  • Eliane Bécache, Patrick Joly, Chrysoula Tsogka. Some New Mixed Finite Elements in View of the Numerical Solution of Time Dependent Wave Propagation Problems. [Research Report] RR-3445, INRIA. 1998. 〈inria-00073245〉
  • Eliane Bécache, Francis Collino, Patrick Joly. Higher-Order Numerical Schemes and Operator Splitting for Solving 3D Paraxial Wave Equations in Heterogeneous Media. [Research Report] RR-3497, INRIA. 1998. 〈inria-00073188〉

HDR1 document

  • Eliane Bécache. Méthodes variationnelles, Domaines fictifs et conditions aux limites artificielles pour des problèmes hyperboliques linéaires. Applications aux ondes dans les solides. Mathématiques [math]. Université Paris Dauphine - Paris IX, 2003. 〈tel-00004880v2〉

Cours1 document

  • Eliane Bécache, Patrick Joly, Chrysoula Tsogka. Méthodes numériques: Éléments finis mixtes et méthode des domaines fictifs pour l'élastodynamique. École thématique. France. 2001. 〈cel-01810774〉