Skip to Main content
Number of documents

122

Jean Dolbeault: curriculum vitae


Please see my webpage

 

https://www.ceremade.dauphine.fr/~dolbeaul/


Journal articles106 documents

  • Denis Bonheure, Jean Dolbeault, Maria J. Esteban, Ari Laptev, Michael Loss. Inequalities involving Aharonov-Bohm magnetic potentials in dimensions 2 and 3. Reviews in Mathematical Physics, World Scientific Publishing, 2021, 33 (3), pp.2150006-1-2150006-29. ⟨10.1142/S0129055X21500069⟩. ⟨hal-02021174v3⟩
  • Jean Dolbeault, Gabriel Turinici. Social heterogeneity and the COVID-19 lockdown in a multi-group SEIR model. Computational and Mathematical Biophysics, de Gruyter, 2021, 9, pp.14-21. ⟨10.1515/cmb-2020-0115⟩. ⟨hal-02614585⟩
  • Kleber Carrapatoso, Jean Dolbeault, Frédéric Hérau, Stéphane Mischler, Clément Mouhot. Weighted Korn and Poincaré-Korn inequalities in the Euclidean space and associated operators. Archive for Rational Mechanics and Analysis, Springer Verlag, In press. ⟨hal-03059166⟩
  • Lanoir Addala, Jean Dolbeault, Xingyu Li, M Lazhar Tayeb. L2-Hypocoercivity and large time asymptotics of the linearized Vlasov-Poisson-Fokker-Planck system. Journal of Statistical Physics, Springer Verlag, 2021, 184 (1), pp.4. ⟨10.1007/s10955-021-02784-4⟩. ⟨hal-02299535v4⟩
  • Emeric Bouin, Jean Dolbeault, Christian Schmeiser. A variational proof of Nash's inequality. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Serie IX. Rendiconti Lincei. Matematica e Applicazioni, European Mathematical Society, In press, 31, pp.211-223. ⟨10.4171/RLM/886⟩. ⟨hal-01940110⟩
  • Jean Dolbeault, Maria J. Esteban. Improved interpolation inequalities and stability. Advanced Nonlinear Studies, Walter de Gruyter GmbH, 2020, 20 (2), pp.277-291. ⟨10.1515/ans-2020-2080⟩. ⟨hal-02266625⟩
  • Emeric Bouin, Jean Dolbeault, Laurent Lafleche, Christian Schmeiser. Hypocoercivity and sub-exponential local equilibria. Monatshefte für Mathematik, Springer Verlag, In press, ⟨10.1007/s00605-020-01483-8⟩. ⟨hal-02377195v2⟩
  • Jean Dolbeault, Gabriel Turinici. Heterogeneous social interactions and the COVID-19 lockdown outcome in a multi-group SEIR model. Mathematical Modelling of Natural Phenomena, EDP Sciences, 2020, Coronavirus: Scientific insights and societal aspects, 15 (36), pp.1-18. ⟨10.1051/mmnp/2020025⟩. ⟨hal-02559938v2⟩
  • Emeric Bouin, Jean Dolbeault, Christian Schmeiser. Diffusion and kinetic transport with very weak confinement. Kinetic and Related Models , AIMS, 2020, 13 (2), pp.345-371. ⟨10.3934/krm.2020012⟩. ⟨hal-01991665⟩
  • Jean Dolbeault, Marta Garcia-Huidobro, Raul Manásevich. Interpolation inequalities in W1,p(S1) and carré du champ methods. Discrete and Continuous Dynamical Systems - Series A, American Institute of Mathematical Sciences, 2020, 40 (1), pp.375-394. ⟨10.3934/dcds.2020014⟩. ⟨hal-02003141v2⟩
  • Emeric Bouin, Jean Dolbeault, Stéphane Mischler, Clément Mouhot, Christian Schmeiser. Hypocoercivity without confinement. Pure and Applied Analysis, Mathematical Sciences Publishers, 2020, 2 (2), pp.203-232. ⟨10.2140/paa.2020.2.203⟩. ⟨hal-01575501v4⟩
  • José Carrillo, Matías Delgadino, Jean Dolbeault, Rupert Frank, Franca Hoffmann. Reverse Hardy-Littlewood-Sobolev inequalities. Journal de Mathématiques Pures et Appliquées, Elsevier, 2019, 132, pp.133-165. ⟨10.1016/j.matpur.2019.09.001⟩. ⟨hal-01837888v3⟩
  • Jean Dolbeault, Xingyu Li. Generalized logarithmic Hardy-Littlewood-Sobolev inequality. International Mathematics Research Notices, Oxford University Press (OUP), In press, ⟨10.1093/imrn/rnz324⟩. ⟨hal-02281279v3⟩
  • Denis Bonheure, Jean Dolbeault, Maria J. Esteban, Ari Laptev, Michael Loss. Symmetry results in two-dimensional inequalities for Aharonov-Bohm magnetic fields. Communications in Mathematical Physics, Springer Verlag, 2019, 375 (3), pp.2071-2087. ⟨10.1007/s00220-019-03560-y⟩. ⟨hal-02003872v2⟩
  • Jean Dolbeault, Xingyu Li. Phi-Entropies: convexity, coercivity and hypocoercivity for Fokker–Planck and kinetic Fokker–Planck equations. Mathematical Models and Methods in Applied Sciences, World Scientific Publishing, 2018, 28 (13), pp.2637-2666. ⟨10.1142/S0218202518500574⟩. ⟨hal-01672455v2⟩
  • Jean Dolbeault, Maria J. Esteban, Ari Laptev, Michael Loss. Magnetic rings. Journal of Mathematical Physics, American Institute of Physics (AIP), 2018, 59 (5), pp.051504. ⟨10.1063/1.5022121⟩. ⟨hal-01680917v2⟩
  • Jean Dolbeault, Maria J. Esteban, Ari Laptev, Michael Loss. Interpolation inequalities and spectral estimates for magnetic operators. Annales Henri Poincaré. A Journal of Theoretical and Mathematical Physics, 2018, 19 (5), pp.1439-1463. ⟨10.1007/s00023-018-0663-9⟩. ⟨hal-01534961v2⟩
  • Maxime Chupin, Jean Dolbeault, Maria J. Esteban, Mathieu Lewin. Une cartographie de la communauté mathématique française. Gazette des Mathématiciens, Société Mathématique de France, 2018, 156, pp.49-61. ⟨hal-01705526⟩
  • Jean Dolbeault, Maria J. Esteban, Michael Loss. Interpolation inequalities on the sphere: linear vs. nonlinear flows. Annales de la Faculté des Sciences de Toulouse. Mathématiques., Université Paul Sabatier _ Cellule Mathdoc 2017, 26 (2), pp.351-379. ⟨hal-01206975v2⟩
  • Jean Dolbeault, Maria J. Esteban, Gaspard Jankowiak. Onofri inequalities and rigidity results. Discrete and Continuous Dynamical Systems, 2017, 37 (6), pp.3059-3078. ⟨hal-00985211v2⟩
  • Jean Dolbeault, Maria J. Esteban, Michael Loss, Matteo Muratori. Symmetry for extremal functions in subcritical Caffarelli-Kohn-Nirenberg inequalities. Comptes Rendus. Mathématique, Académie des sciences (Paris), 2017, 355 (2), pp.133-154. ⟨hal-01318727⟩
  • Matteo Bonforte, Jean Dolbeault, Matteo Muratori, Bruno Nazaret. Weighted fast diffusion equations (Part I): Sharp asymptotic rates without symmetry and symmetry breaking in Caffarelli-Kohn-Nirenberg inequalities. Kinetic and Related Models , AIMS, 2017, 10 (1), pp. 33-59. ⟨hal-01279326v2⟩
  • Matteo Bonforte, Jean Dolbeault, Matteo Muratori, Bruno Nazaret. Weighted fast diffusion equations (Part II): Sharp asymptotic rates of convergence in relative error by entropy methods. Kinetic and Related Models , AIMS, 2017, 10 (1), pp.61-91. ⟨hal-01279327v2⟩
  • Jean Dolbeault, Michal Kowalczyk. Uniqueness and rigidity in nonlinear elliptic equations, interpolation inequalities and spectral estimates. Annales de la Faculté des Sciences de Toulouse. Mathématiques., Université Paul Sabatier _ Cellule Mathdoc In press, 26 (4), pp.949-977. ⟨10.5802/afst.1557⟩. ⟨hal-01092572v3⟩
  • Jean Dolbeault, An Zhang. Flows and functional inequalities for fractional operators. Applicable Analysis, Taylor & Francis, 2017, 96 (9), pp.1547-1560. ⟨hal-01404580⟩
  • Jean Dolbeault, Giuseppe Toscani. Nonlinear diffusions: extremal properties of Barenblatt profiles, best matching and delays. Nonlinear Analysis: Theory, Methods and Applications, Elsevier, 2016, 138, pp.31-43. ⟨hal-01103574⟩
  • Jean Dolbeault, Maria J. Esteban, Michael Loss. Interpolation inequalities, nonlinear flows, boundary terms, optimality and linearization. Journal of Elliptic and Parabolic Equations, 2016, 2, pp.267-295. ⟨hal-01395771⟩
  • Jean Dolbeault, Maria J. Esteban, Michael Loss. Rigidity versus symmetry breaking via nonlinear flows on cylinders and Euclidean spaces. Inventiones Mathematicae, Springer Verlag, 2016, 206 (2), pp.397-440. ⟨hal-01162902v2⟩
  • Jean Dolbeault, Matteo Muratori, Bruno Nazaret. Weighted interpolation inequalities: a perturbation approach. Mathematische Annalen, Springer Verlag, 2016, ⟨10.1007/s00208-016-1480-4⟩. ⟨hal-01207009v3⟩
  • Jean Dolbeault, An Zhang. Optimal functional inequalities for fractional operators on the sphere and applications. Advanced Nonlinear Studies, Walter de Gruyter GmbH, 2016, 16 (4), pp.863-880. ⟨hal-01358059v2⟩
  • Jean Dolbeault, Maria J. Esteban, Stathis Filippas, Achiles Tertikas. Rigidity results with applications to best constants and symmetry of Caffarelli-Kohn-Nirenberg and logarithmic Hardy inequalities: Symmetry in Caffarelli-Kohn-Nirenberg and logarithmic Hardy inequalities. Calculus of Variations and Partial Differential Equations, Springer Verlag, 2015, pp.10.1007/s00526-015-0871-9. ⟨hal-01089318⟩
  • Jean Dolbeault, Clément Mouhot, Christian Schmeiser. Hypocoercivity for linear kinetic equations conserving mass. Transactions of the American Mathematical Society, American Mathematical Society, 2015, 367, pp.3807-3828. ⟨hal-00482286⟩
  • Jean Dolbeault, Giuseppe Toscani. Stability results for logarithmic Sobolev and Gagliardo-Nirenberg inequalities. International Mathematics Research Notices, Oxford University Press (OUP), 2015, 2016 (2), pp.473-498. ⟨hal-01081098v2⟩
  • Jean Dolbeault, Maria J. Esteban, Michael Loss. Keller-Lieb-Thirring inequalities for Schrödinger operators on cylinders. Comptes Rendus. Mathématique, Académie des sciences (Paris), 2015, 353 (9), pp.813-818. ⟨hal-01137403v2⟩
  • Jean Dolbeault, Robert Stanczy. Bifurcation diagrams and multiplicity for nonlocal elliptic equations modeling gravitating systems based on Fermi-Dirac statistics. Discrete and Continuous Dynamical Systems - Series A, American Institute of Mathematical Sciences, 2015, 35 (1), pp.139-154. ⟨hal-00859375v2⟩
  • Jean Dolbeault, Peter Markowich, Gaspard Jankowiak. Stationary solutions of Keller-Segel type crowd motion and herding models: multiplicity and dynamical stability. Mathematics and Mechanics of Complex Systems, International Research Center for Mathematics & Mechanics of Complex Systems (M&MoCS),University of L’Aquila in Italy, 2015, 3 (3), pp.211-241. ⟨hal-00821206v2⟩
  • Jean Dolbeault, Giuseppe Toscani. Best matching Barenblatt profiles are delayed. Journal of Physics A General Physics (1968-1972), Institute of Physics (IOP), 2015, 48 (6), pp.065206, 14. ⟨hal-01058838v2⟩
  • Jean Dolbeault, Maria J. Esteban, Gaspard Jankowiak. The Moser-Trudinger-Onofri inequality. Chinese Annals of Mathematics - Series B, Springer Verlag, 2015, 36 (5), pp.777-802. ⟨hal-00961363v3⟩
  • Jean Dolbeault, Maria J. Esteban, Michael Loss. Nonlinear flows and rigidity results on compact manifolds. Journal of Functional Analysis, Elsevier, 2014, 267 (5), pp.1338-1363. ⟨hal-00784887v2⟩
  • Jean Dolbeault, Maria J. Esteban. Branches of non-symmetric critical points and symmetry breaking in nonlinear elliptic partial differential equations. Nonlinearity, IOP Publishing, 2014, 27, p. 435-465. ⟨hal-00812996v2⟩
  • Jean Dolbeault, Maria J. Esteban, Ari Laptev. Spectral estimates on the sphere. Analysis & PDE, Mathematical Sciences Publishers, 2014, 7 (2), pp.435-460. ⟨hal-00770755v2⟩
  • Jean Dolbeault, Maria J. Esteban, Michal Kowalczyk, Michael Loss. Improved interpolation inequalities on the sphere. Discrete and Continuous Dynamical Systems - Series S, American Institute of Mathematical Sciences, 2014, 7 (4), pp.695-724. ⟨hal-00867909v2⟩
  • Juan Campos Serrano, Jean Dolbeault. Asymptotic estimates for the parabolic-elliptic Keller-Segel model in the plane. Communications in Partial Differential Equations, Taylor & Francis, 2014, 39 (5), pp.806-841. ⟨hal-00706194v2⟩
  • Carmen Cortázar, Jean Dolbeault, Marta Garcia-Huidobro, Raul Manásevich. Existence of sign changing solutions for an equation with a weighted p-Laplace operator. Nonlinear Analysis: Theory, Methods and Applications, Elsevier, 2014, 110, pp.1-22. ⟨hal-00985507v2⟩
  • Jean Dolbeault, Gaspard Jankowiak. Sobolev and Hardy-Littlewood-Sobolev inequalities. Journal of Differential Equations, Elsevier, 2014, 257 (6), pp.1689-1720. ⟨hal-00915998v3⟩
  • Jean Dolbeault, Maria J. Esteban, Ari Laptev, Michael Loss. One-dimensional Gagliardo-Nirenberg-Sobolev inequalities: Remarks on duality and flows. Journal of the London Mathematical Society, London Mathematical Society, 2014, 90 (2), pp.525-550. ⟨hal-00857955v2⟩
  • Jean Dolbeault, Maria J. Esteban, Ari Laptev, Michael Loss. Spectral properties of Schrödinger operators on compact manifolds: rigidity, flows, interpolation and spectral estimates. Comptes rendus de l'Académie des sciences. Série I, Mathématique, Elsevier, 2013, 351 (11-12), pp.437-440. ⟨hal-00799252v2⟩
  • Jean Dolbeault, Axel Klar, Clément Mouhot, Christian Schmeiser. Exponential rate of convergence to equilibrium for a model describing fiber lay-down processes. Applied Mathematics Research eXpress, Oxford University Press (OUP): Policy H - Oxford Open Option A, 2013, 2013, pp.165-175. ⟨10.1093/amrx/abs015⟩. ⟨hal-00658343⟩
  • Jean Dolbeault, Giuseppe Toscani. Improved interpolation inequalities, relative entropy and fast diffusion equations. Annales de l'Institut Henri Poincaré (C) Non Linear Analysis, Elsevier, 2013, 30 (5), pp.917-934. ⟨hal-00634852v2⟩
  • Jean Dolbeault, Marta Garcia-Huidobro, Raul Manásevich. Qualitative properties and existence of sign changing solutions with compact support for an equation with a p-Laplace operator. Avanced Nonlinear Studies, 2013. ⟨hal-00727573⟩
  • Isabelle Catto, Jean Dolbeault, Óscar Sánchez, Juan Soler. Existence of steady states for the Maxwell-Schrödinger-Poisson system: exploring the applicability of the concentration-compactness principle. Mathematical Models and Methods in Applied Sciences, World Scientific Publishing, 2013, 23 (10), pp.1915-1938. ⟨hal-00834551⟩
  • Jean Dolbeault, Maria J. Esteban, Michal Kowalczyk, Michael Loss. Sharp interpolation inequalities on the sphere : new methods and consequences. Chinese Annals of Mathematics - Series B, Springer Verlag, 2013, 34 (1), pp.99-112. ⟨10.1007/s11401-012-0756-6⟩. ⟨hal-00739140⟩
  • Manuel del Pino, Jean Dolbeault. The Euclidean Onofri inequality in higher dimensions. International Mathematics Research Notices, Oxford University Press (OUP), 2013, 15, pp.3600-3611. ⟨hal-00658665⟩
  • Jean Dolbeault, Maria J. Esteban. A scenario for symmetry breaking in Caffarelli-Kohn-Nirenberg inequalities. Journal of Numerical Mathematics, De Gruyter, 2013, 30 (3-4), pp.233-249. ⟨hal-00695542⟩
  • Jean Dolbeault, Bruno Volzone. Improved Poincaré inequalities. Nonlinear Analysis: Theory, Methods and Applications, Elsevier, 2012, 75 (16), pp.5985 - 6001. ⟨hal-00638281⟩
  • Jean Dolbeault, Maria J. Esteban. Extremal functions for Caffarelli-Kohn-Nirenberg and logarithmic Hardy inequalities. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, Cambridge University Press (CUP), 2012, 142A, pp.745-767. ⟨hal-00496936v2⟩
  • Jean Dolbeault, Bruno Nazaret, Giuseppe Savaré. From Poincaré to logarithmic Sobolev inequalities: a gradient flow approach. SIAM Journal on Mathematical Analysis, Society for Industrial and Applied Mathematics, 2012, 44 (5), pp.3186-3216. ⟨hal-00595042⟩
  • Jean Dolbeault, Juan Campos Serrano. A functional framework for the Keller-Segel system: logarithmic Hardy-Littlewood-Sobolev and related spectral gap inequalities. Comptes Rendus. Mathématique, Académie des sciences (Paris), 2012, 350 (21-22), pp.949-954. ⟨hal-00706249v2⟩
  • Jean Dolbeault, Maria J. Esteban, Michael Loss. Symmetry of extremals of functional inequalities via spectral estimates for linear operators. Journal of Mathematical Physics, American Institute of Physics (AIP), 2012, 53(P), pp.095204. ⟨hal-00626739v2⟩
  • Jean-Philippe Bartier, Adrien Blanchet, Jean Dolbeault, Miguel Escobedo. Improved intermediate asymptotics for the heat equation. Applied Mathematics Letters, Elsevier, 2011, 24 (1), pp.76 - 81. ⟨10.1016/j.aml.2010.08.020⟩. ⟨hal-00409935⟩
  • Jean Dolbeault. Sobolev and Hardy-Littlewood-Sobolev inequalities: duality and fast diffusion. Math. Res. Lett., 2011, 18 (6), pp.1037-1050. ⟨hal-00573943⟩
  • Jean Dolbeault, Giuseppe Toscani. Fast diffusion equations: matching large time asymptotics by relative entropy methods. Kinetic and Related Models , AIMS, 2011, 4 (3), pp.701-716. ⟨hal-00482898v2⟩
  • Piotr Biler, Lucilla Corrias, Jean Dolbeault. Large mass self-similar solutions of the parabolic-parabolic Keller--Segel model of chemotaxis. Journal of Mathematical Biology, Springer Verlag (Germany), 2011, 63, pp.1-32. ⟨10.1007/s00285-010-0357-5⟩. ⟨hal-00411913⟩
  • Gonca Aki, Jean Dolbeault, Christof Sparber. Thermal effects in gravitational Hartree systems. Annales Henri Poincaré, Springer Verlag, 2011, 12, pp.1055-1079. ⟨hal-00512641⟩
  • Jean Dolbeault, Maria J. Esteban, Gabriella Tarantello, Achiles Tertikas. Radial symmetry and symmetry breaking for some interpolation inequalities. Calculus of Variations and Partial Differential Equations, Springer Verlag, 2011, 42, pp.461-485. ⟨hal-00516710⟩
  • Juan Campos Serrano, Manuel del Pino, Jean Dolbeault. Relative equilibria in continuous stellar dynamics. Communications in Mathematical Physics, Springer Verlag, 2010, 300, pp.765-788. ⟨10.1007/s00220-010-1128-2⟩. ⟨hal-00450754⟩
  • Matteo Bonforte, Jean Dolbeault, Gabriele Grillo, Juan-Luis Vázquez. Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities. Proceedings of the National Academy of Sciences of the United States of America , National Academy of Sciences, 2010, 107 (38), pp.16459-16464. ⟨10.1073/pnas.1003972107⟩. ⟨hal-00404718⟩
  • Manuel del Pino, Jean Dolbeault, Stathis Filippas, Achiles Tertikas. A logarithmic Hardy inequality. Journal of Functional Analysis, Elsevier, 2010, 259 (8), pp.2045-2072. ⟨10.1016/j.jfa.2010.06.005⟩. ⟨hal-00438199⟩
  • Adrien Blanchet, Matteo Bonforte, Jean Dolbeault, Gabriele Grillo, Juan-Luis Vázquez. Asymptotics of the fast diffusion equation via entropy estimates. Archive for Rational Mechanics and Analysis, Springer Verlag, 2009, 191, pp.347-385. ⟨hal-00142404⟩
  • Jean Dolbeault, Maria J. Esteban, Michael Loss, Gabriella Tarantello. On the symmetry of extremals for the Caffarelli-Kohn-Nirenberg inequalities. Advanced Nonlinear Studies, Walter de Gruyter GmbH, 2009, 9, pp.713-727. ⟨hal-00402961v2⟩
  • Jean Dolbeault, Clément Mouhot, Christian Schmeiser. Hypocoercivity for kinetic equations with linear relaxation terms. Comptes Rendus. Mathématique, Académie des sciences (Paris), 2009, 347 (9-10), pp.511-516. ⟨hal-00331947v2⟩
  • Jean Dolbeault, Christian Schmeiser. The two-dimensional Keller-Segel model after blow-up. Discrete and Continuous Dynamical Systems - Series B, American Institute of Mathematical Sciences, 2009, 25, pp.109-121. ⟨hal-00158767⟩
  • Jean Dolbeault, Robert Stanczy. Non-existence and uniqueness results for supercritical semilinear elliptic equations. Annales Henri Poincaré, Springer Verlag, 2009, 10 (7), pp.1311-1333. ⟨hal-00349574v2⟩
  • Jean Dolbeault, Maria J. Esteban, Gabriella Tarantello. Multiplicity results for the assigned Gauss curvature problem in R2. Nonlinear Analysis: Theory, Methods and Applications, Elsevier, 2009, 70 (8), pp.2870-2881. ⟨hal-00323700⟩
  • Jean Dolbeault, Patricio Felmer, Mathieu Lewin. Orbitally stable states in generalized Hartree-Fock theory. Mathematical Models and Methods in Applied Sciences, World Scientific Publishing, 2009, 19 (3), pp.347-367. ⟨hal-00250383⟩
  • Rafael Benguria, Jean Dolbeault, Régis Monneau. Harnack inequalities and discrete - continuum error estimates for a chain of atoms with two - body interactions. Journal of Statistical Physics, Springer Verlag, 2009, 134, pp.27-51. ⟨hal-00267954⟩
  • Adrien Blanchet, Jean Dolbeault, Michal Kowalczyk. Stochastic Stokes' drift, homogenized functional inequalities, and large time behavior of Brownian ratchets. SIAM Journal on Mathematical Analysis, Society for Industrial and Applied Mathematics, 2009, 41, pp.46-76. ⟨hal-00270521⟩
  • Jean Dolbeault, Bruno Nazaret, Giuseppe Savaré. A new class of transport distances between measures. Calc. Var. Partial Differential Equations, 2009, 34 (2), pp.193-231. ⟨hal-00262455⟩
  • Adrien Blanchet, Jean Dolbeault, Michal Kowalczyk. Travelling fronts in stochastic Stokes' drifts. Physica A: Statistical Mechanics and its Applications, Elsevier, 2008, 387 (23), pp.5741-5751. ⟨10.1016/j.physa.2008.06.011⟩. ⟨hal-00277279⟩
  • Jean Dolbeault, Maria J. Esteban, Michael Loss. Characterization of the critical magnetic field in the Dirac-Coulomb equation. Journal of Physics A General Physics (1968-1972), Institute of Physics (IOP), 2008, 41, pp.185303. ⟨hal-00201095⟩
  • Jean Dolbeault, Ari Laptev, Michael Loss. Lieb-Thirring inequalities with improved constants. Journal of the European Mathematical Society, European Mathematical Society, 2008, 10, pp.1121-1126. ⟨hal-00166707v2⟩
  • Jean Dolbeault, Bruno Nazaret, Giuseppe Savaré. On the Bakry-Emery criterion for linear diffusions and weighted porous media equations. Communications in Mathematical Sciences, International Press, 2008, 6, pp.477-494. ⟨hal-00196935⟩
  • Jean Dolbeault, Patricio Felmer, Juan Mayorga-Zambrano. Compactness properties for trace-class operators and applications to quantum mechanics. Monatshefte für Mathematik, Springer Verlag, 2008, 155 (1), pp.43-66. ⟨hal-00088819⟩
  • Jean Dolbeault, Javier Fernández. Localized minimizers of flat rotating gravitational systems. Annales de l'Institut Henri Poincaré (C) Non Linear Analysis, Elsevier, 2008, 25, pp.1043-1071. ⟨hal-00112165⟩
  • Roberta Bosi, Jean Dolbeault, Maria J. Esteban. Estimates for the optimal constants in multipolar Hardy inequalities for Schrödinger and Dirac operators. Communications on Pure and Applied Mathematics, Wiley, 2008, 7, pp.533-562. ⟨hal-00113158⟩
  • Jean Dolbeault, Ivan Gentil, Arnaud Guillin, Feng-Yu Wang. Lq-functional inequalities and weighted porous media equations. Potential Analysis, Springer Verlag, 2008, 28, pp.35-59. ⟨hal-00122415⟩
  • Jean Dolbeault, Maria J. Esteban, Gabriella Tarantello. The role of Onofri type inequalities in the symmetry properties of extremals for Caffarelli-Kohn-Nirenberg inequalities, in two space dimensions. Annali della Scuola Normale Superiore di Pisa, 2008, 7, pp.313-341. ⟨hal-00139062⟩
  • Adrien Blanchet, Jean Dolbeault, Miguel Escobedo, Javier Fernández. Asymptotic behaviour for small mass in the two-dimensional parabolic-elliptic Keller-Segel model. Journal of Mathematical Analysis and Applications, Elsevier, 2008, 361 (2), pp.533-542. ⟨10.1016/j.jmaa.2009.07.034⟩. ⟨hal-00349216⟩
  • Adrien Blanchet, Matteo Bonforte, Jean Dolbeault, Gabriele Grillo, Juan-Luis Vázquez. Hardy-Poincaré inequalities and applications to nonlinear diffusions. Comptes rendus de l'Académie des sciences. Série I, Mathématique, Elsevier, 2007, 344 (7), pp.431-436. ⟨hal-00105661⟩
  • Jean-Philippe Bartier, Jean Dolbeault, Reinhard Illner, Michal Kowalczyk. A qualitative study of linear drift-diffusion equations with time-dependent or degenerate coefficients. Mathematical Models and Methods in Applied Sciences, World Scientific Publishing, 2007, 17 (3), pp.327-362. ⟨hal-00016363⟩
  • Jean Dolbeault, Maria J. Esteban, Michael Loss. Relativistic hydrogenic atoms in strong magnetic fields. Annales Henri Poincaré, Springer Verlag, 2007, 8 (4), pp.749-779. ⟨hal-00083501⟩
  • Jean Dolbeault, Javier Duoandikoetxea, Maria J. Esteban, Luis Vega. Hardy-type estimates for Dirac operators. Annales Scientifiques de l'École Normale Supérieure, Société mathématique de France, 2007, 40 (6), pp.885-900. ⟨hal-00112858⟩
  • Anton Arnold, Jean-Philippe Bartier, Jean Dolbeault. Interpolation between logarithmic Sobolev and Poincaré inequalities. Communications in Mathematical Sciences, International Press, 2007, 5 (4), pp.971-979. ⟨hal-00005559⟩
  • Jean Dolbeault, Peter Markowich, Dietmar Oelz, Christian Schmeiser. Nonlinear diffusions as limit of kinetic equations with relaxation collision kernels. Archive for Rational Mechanics and Analysis, Springer Verlag, 2007, 186 (1), pp.133-158. ⟨hal-00005892⟩
  • José Carrillo, Jean Dolbeault, Ivan Gentil, Ansgar Juengel. Entropy-Energy inequalities and improved convergence rates for nonlinear parabolic equations. Discrete and Continuous Dynamical Systems - Series B, American Institute of Mathematical Sciences, 2006, 6 (5), pp.1027-1050. ⟨hal-00008520⟩
  • Jean Dolbeault, Maria J. Esteban, Eric Séré. General results on the eigenvalues of operators with gaps, arising from both ends of the gaps. Application to Dirac operators.. Journal of the European Mathematical Society, European Mathematical Society, 2006, 8 (2), pp.243-251. ⟨hal-00012837⟩
  • Adrien Blanchet, Jean Dolbeault, Benoît Perthame. Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions. Electronic Journal of Differential Equations, Texas State University, Department of Mathematics, 2006, 44, 32 pp. ⟨hal-00021782⟩
  • Jean Dolbeault, Jean-Philippe Bartier. Convex Sobolev inequalities and spectral gap. Comptes Rendus. Mathématique, Académie des sciences (Paris), 2006, 342 (5), pp.307-312. ⟨hal-00004418⟩
  • Adrien Blanchet, Jean Dolbeault, Régis Monneau. On the continuity of the time derivative of the solution to the parabolic obstacle problem with variable coefficients. Journal de Mathématiques Pures et Appliquées, Elsevier, 2006, 85 (3), pp.371-414. ⟨hal-00004421⟩
  • Jean Dolbeault, Javier Fernández, Óscar Sánchez. Stability for the gravitational Vlasov-Poisson system in dimension two. Communications in Partial Differential Equations, Taylor & Francis, 2006, 31, pp.1425-1449. ⟨hal-00004799⟩
  • Jean Dolbeault, Patricio Felmer, Michael Loss, Eric Paturel. Lieb-Thirring type inequalities and Gagliardo-Nirenberg inequalities for systems. Journal of Functional Analysis, Elsevier, 2006, 238 (1), pp.193-220. ⟨hal-00005487⟩
  • Adrien Blanchet, Jean Dolbeault, Benoît Perthame. Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions. Electronic Journal of Differential Equations, Texas State University, Department of Mathematics, 2006, 44, pp.32. ⟨hal-00113519⟩
  • Isabelle Catto, Jean Dolbeault, Rafael Benguria, Régis Monneau. Oscillating minimizers of a fourth order problem invariant under scaling. Journal of Differential Equations, Elsevier, 2004, 205 (1), pp.253-269. ⟨10.1016/j.jde.2004.03.024⟩. ⟨hal-00157514⟩
  • Jean Dolbeault, Maria J. Esteban, Eric Séré. A variational method for relativistic computations in atomic and molecular physics. International Journal of Quantum Chemistry, Wiley, 2003, pp.149-155. ⟨hal-00453382⟩
  • Jean Dolbeault, Maria J. Esteban, Eric Séré, Michel Vanbreugel. Minimization methods for the one-particle Dirac equation. Physical Review Letters, American Physical Society, 2000, 85 (19), pp.4020-4023. ⟨10.1103/PhysRevLett.85.4020⟩. ⟨hal-00657535⟩
  • Jean Dolbeault, Maria J. Esteban, Eric Séré. On the eigenvalues of operators with gaps. Application to Dirac operators.. Journal of Functional Analysis, Elsevier, 2000, 174, pp.208-226. ⟨10.1006/jfan.1999.3542⟩. ⟨hal-00659883⟩

Conference papers5 documents

  • Jean Dolbeault, Maria J. Esteban, Michael Loss. Symmetry and symmetry breaking: rigidity and flows in elliptic PDEs. International Congress of Mathematicians, IMU, 2018, Rio de Janeiro, Brazil. pp.2279-2304, ⟨10.1142/9789813272880_0138⟩. ⟨hal-01651793⟩
  • Jean Dolbeault, Maria J. Esteban. About existence, symmetry and symmetry breaking for extremal functions of some interpolation functional inequalities. The Abel Symposium 2010, 2010, Norway. pp.117-130. ⟨hal-00539019⟩
  • Jean Dolbeault. Extremal functions and symmetry breaking in Caffarelli-Kohn-Nirenberg inequalities. Optimal Constants in the Theory of Sobolev Spaces and PDEs, Feb 2010, Germany. pp.330-334. ⟨hal-00456919⟩
  • Jean Dolbeault, Maria J. Esteban. Extremal functions in some interpolation inequalities: Symmetry, symmetry breaking and estimates of the best constants. QMath11 Conference Mathematical Results in Quantum Physics, 2010, Czech Republic. pp.178-182. ⟨hal-00521677⟩
  • Adrien Blanchet, Jean Dolbeault, Régis Monneau. On the one-dimensional parabolic obstacle problem with variable coefficients. Elliptic and parabolic problems, 2005, France. pp.5-66. ⟨hal-00003074⟩

Book sections4 documents

  • Anton Arnold, Jean Dolbeault, Christian Schmeiser, Tobias Wöhrer. Sharpening of decay rates in Fourier based hypocoercivity methods. F. Salvarani. Recent Advances in Kinetic Equations and Applications, 48, Springer INdAM Series, In press, ⟨10.1007/978-3-030-82946-9_1⟩. ⟨hal-03078698v2⟩
  • Jean Dolbeault, Maria J. Esteban, Michael Loss. Critical magnetic field for 2d magnetic Dirac-Coulomb operators and Hardy inequalities. Partial Differential Equations, Spectral Theory, and Mathematical Physics. The Ari Laptev Anniversary Volume, 18, EMS Press, pp.41-63, 2021, Partial Differential Equations, Spectral Theory, and Mathematical Physics. The Ari Laptev Anniversary Volume. EMS Series of Congress Reports. ⟨hal-02984354⟩
  • Anton Arnold, José Antonio Carrillo, Laurent Desvillettes, Jean Dolbeault, Ansgar Jüngel, et al.. Entropies and Equilibria of Many-Particle Systems: An Essay on Recent Research. Nonlinear Differential Equation Models, pp.35-43, 2004, ⟨10.1007/978-3-7091-0609-9_5⟩. ⟨hal-01583063⟩
  • Jean-Paul Desclaux, Jean Dolbeault, Maria J. Esteban, Paul Indelicato, Eric Séré. Computational approaches of relativistic models in quantum chemistry. P.G. Ciarlet (series editor), C. Le Bris (guest editor). Handbook of numerical analysis, Vol. X. Special volume: computational chemistry., North-Holland, Amsterdam, pp.453-483, 2003, Handbook of numerical analysis. ⟨hal-00573854⟩

Preprints, Working Papers, ...7 documents

  • Emeric Bouin, Jean Dolbeault, Laurent Lafleche. Fractional hypocoercivity. 2021. ⟨hal-02377205v2⟩
  • Matteo Bonforte, Jean Dolbeault, Bruno Nazaret, Nikita Simonov. Stability in Gagliardo-Nirenberg-Sobolev inequalities: flows, regularity and the entropy method. 2021. ⟨hal-02887010v2⟩
  • Kleber Carrapatoso, Jean Dolbeault, Frédéric Hérau, Stéphane Mischler, Clément Mouhot, et al.. Special modes and hypocoercivity for linear kinetic equations with several conservation laws and a confining potential. 2021. ⟨hal-03222748⟩
  • Matteo Bonforte, Jean Dolbeault, Bruno Nazaret, Nikita Simonov. Explicit constants in Harnack inequalities and regularity estimates, with an application to the fast diffusion equation. 2020. ⟨hal-02887013⟩
  • Juan Davila, Manuel del Pino, Jean Dolbeault, Monica Musso, Juncheng Wei. Existence and stability of infinite time blow-up in the Keller-Segel system. 2020. ⟨hal-02394787v3⟩
  • Jean Dolbeault, Rupert Frank, Franca Hoffmann. Reverse Hardy-Littlewood-Sobolev inequalities. 2018. ⟨hal-01735446⟩
  • Jean Dolbeault, Maria J. Esteban, Michael Loss. Symmetry of optimizers of the Caffarelli-Kohn-Nirenberg inequalities. 2016. ⟨hal-01286546⟩