Skip to Main content
Number of documents

63

Clément Cancès


Journal articles40 documents

  • Clément Cancès, Claire Chainais-Hillairet, Maxime Herda, Stella Krell. Large time behavior of nonlinear finite volume schemes for convection-diffusion equations. SIAM Journal on Numerical Analysis, Society for Industrial and Applied Mathematics, 2020. ⟨hal-02360155v2⟩
  • Clément Cancès, Flore Nabet, Martin Vohralík. Convergence and a posteriori error analysis for energy-stable finite element approximations of degenerate parabolic equations. Mathematics of Computation, American Mathematical Society, In press, ⟨10.1090/mcom/3577⟩. ⟨hal-01894884v2⟩
  • Clément Cancès, Thomas Gallouët, Gabriele Todeschi. A variational finite volume scheme for Wasserstein gradient flows. Numerische Mathematik, Springer Verlag, 2020, 146 (3), pp 437 - 480. ⟨10.1007/s00211-020-01153-9⟩. ⟨hal-02189050v2⟩
  • Clément Cancès, Didier Granjeon, Quang-Huy Tran, Sylvie Wolf, Nicolas Peton. Numerical scheme for a water flow-driven forward stratigraphic model. Computational Geosciences, Springer Verlag, 2020, 24, pp.37-60. ⟨10.1007/s10596-019-09893-w⟩. ⟨hal-01870347v2⟩
  • Clément Cancès, Benoît Gaudeul. A convergent entropy diminishing finite volume scheme for a cross-diffusion system. SIAM Journal on Numerical Analysis, Society for Industrial and Applied Mathematics, 2020, 58 (5), pp. 2784-2710. ⟨10.1137/20M1316093⟩. ⟨hal-02465431v2⟩
  • Clément Cancès, Claire Chainais-Hillairet, Jürgen Fuhrmann, Benoît Gaudeul. A numerical analysis focused comparison of several Finite Volume schemes for an Unipolar Degenerated Drift-Diffusion Model. IMA Journal of Numerical Analysis, Oxford University Press (OUP), In press, ⟨10.1093/imanum/draa002⟩. ⟨hal-02194604v3⟩
  • Ahmed Ait Hammou Oulhaj, Clément Cancès, Claire Chainais-Hillairet, Philippe Laurençot. Large time behavior of a two phase extension of the porous medium equation. Interfaces and Free Boundaries, European Mathematical Society, 2019, 21, pp.199-229. ⟨10.4171/IFB/421⟩. ⟨hal-01752759⟩
  • Clément Cancès, Thomas Gallouët, Maxime Laborde, Léonard Monsaingeon. Simulation of multiphase porous media flows with minimizing movement and finite volume schemes. European Journal of Applied Mathematics, Cambridge University Press (CUP), 2019, 30 (6), pp.1123-1152. ⟨10.1017/S0956792518000633⟩. ⟨hal-01700952⟩
  • Oriane Blondel, Clément Cancès, Makiko Sasada, Marielle Simon. Convergence of a Degenerate Microscopic Dynamics to the Porous Medium Equation. Annales de l'Institut Fourier, Association des Annales de l'Institut Fourier, In press. ⟨hal-01710628v3⟩
  • Clément Cancès, Claire Chainais-Hillairet, Anita Gerstenmayer, Ansgar Jüngel. Convergence of a Finite-Volume Scheme for a Degenerate Cross-Diffusion Model for Ion Transport. Numerical Methods for Partial Differential Equations, Wiley, 2019, 35 (2), pp.545-575. ⟨10.1002/num.22313⟩. ⟨hal-01695129⟩
  • Clément Cancès, Daniel Matthes, Flore Nabet. A two-phase two-fluxes degenerate Cahn-Hilliard model as constrained Wasserstein gradient flow. Archive for Rational Mechanics and Analysis, Springer Verlag, 2019, 233 (2), pp.837-866. ⟨10.1007/s00205-019-01369-6⟩. ⟨hal-01665338v3⟩
  • Ahmed Ait Hammou Oulhaj, Clément Cancès, Claire Chainais-Hillairet. Numerical analysis of a nonlinearly stable and positive Control Volume Finite Element scheme for Richards equation with anisotropy. ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2018, 52 (4), pp.1532-1567. ⟨10.1051/m2an/2017012⟩. ⟨hal-01372954⟩
  • Clément Cancès, Claire Chainais-Hillairet, Stella Krell. Numerical analysis of a nonlinear free-energy diminishing Discrete Duality Finite Volume scheme for convection diffusion equations. Computational Methods in Applied Mathematics, De Gruyter, 2018, 18 (3), pp.407-432. ⟨10.1515/cmam-2017-0043⟩. ⟨hal-01529143⟩
  • Konstantin Brenner, Clément Cancès. Improving Newton's method performance by parametrization: the case of Richards equation. SIAM Journal on Numerical Analysis, Society for Industrial and Applied Mathematics, 2017, 55 (4), pp.1760--1785. ⟨hal-01342386⟩
  • Clément Cancès, Moustafa Ibrahim, Mazen Saad. Positive nonlinear CVFE scheme for degenerate anisotropic Keller-Segel system. SMAI Journal of Computational Mathematics, Société de Mathématiques Appliquées et Industrielles (SMAI), 2017, 3, pp.1--28. ⟨hal-01119210⟩
  • Clément Cancès, Thomas Gallouët, Leonard Monsaingeon. Incompressible immiscible multiphase flows in porous media: a variational approach. Analysis & PDE, Mathematical Sciences Publishers, 2017, 10 (8), pp.1845-1876. ⟨10.2140/apde.2017.10.1845⟩. ⟨hal-01345438v2⟩
  • Clément Cancès, Cindy Guichard. Numerical analysis of a robust free energy diminishing Finite Volume scheme for parabolic equations with gradient structure. Foundations of Computational Mathematics, Springer Verlag, 2017, 17 (6), pp.1525-1584. ⟨hal-01119735v4⟩
  • Boris Andreianov, Clément Cancès, Ayman Moussa. A nonlinear time compactness result and applications to discretization of degenerate parabolic-elliptic PDEs. Journal of Functional Analysis, Elsevier, 2017, 273 (12), pp.3633-3670. ⟨hal-01142499⟩
  • Clément Cancès, Frédéric Coquel, Edwige Godlewski, Hélène Mathis, Nicolas Seguin. Error analysis of a dynamic model adaptation procedure for nonlinear hyperbolic equations. Communications in Mathematical Sciences, International Press, 2016, 14 (1), pp.1-30. ⟨10.4310/CMS.2016.v14.n1.a1⟩. ⟨hal-00852101⟩
  • Clément Cancès, Hélène Mathis, Nicolas Seguin. Error estimate for time-explicit finite volume approximation of strong solutions to systems of conservation laws. SIAM Journal on Numerical Analysis, Society for Industrial and Applied Mathematics, 2016, 54 (2), pp.1263-1287. ⟨10.1137/15M1029886⟩. ⟨hal-00798287v3⟩
  • Clément Cancès, Cindy Guichard. Convergence of a nonlinear entropy diminishing Control Volume Finite Element scheme for solving anisotropic degenerate parabolic equations. Mathematics of Computation, American Mathematical Society, 2016, 85 (298), pp.549-580. ⟨hal-00955091⟩
  • Clément Cancès, Thomas Gallouët, Léonard Monsaingeon. The gradient flow structure for incompressible immiscible two-phase flows in porous media. Comptes rendus de l'Académie des sciences. Série I, Mathématique, Elsevier, 2015, 353, pp.985-989. ⟨hal-01122770⟩
  • Hélène Mathis, Clément Cancès, Edwige Godlewski, Nicolas Seguin. Dynamic model adaptation for multiscale simulation of hyperbolic systems with relaxation. Journal of Scientific Computing, Springer Verlag, 2015, 63 (3), pp.820-861. ⟨10.1007/s10915-014-9915-0⟩. ⟨hal-00782637v2⟩
  • Boris Andreianov, Clément Cancès. On interface transmission conditions for conservation laws with discontinuous flux of general shape. Journal of Hyperbolic Differential Equations, World Scientific Publishing, 2015, 12 (2), pp.343-384. ⟨10.1142/S0219891615500101⟩. ⟨hal-00940756v2⟩
  • Clément Cancès, Iuliu Sorin Pop, Martin Vohralík. An a posteriori error estimate for vertex-centered finite volume discretizations of immiscible incompressible two-phase flow. Mathematics of Computation, American Mathematical Society, 2014, 83 (285), pp.153-188. ⟨10.1090/S0025-5718-2013-02723-8⟩. ⟨hal-00623209v2⟩
  • Boris Andreianov, Clément Cancès. A phase-by-phase upstream scheme that converges to the vanishing capillarity solution for countercurrent two-phase flow in two-rocks media. Computational Geosciences, Springer Verlag, 2014, 18 (2), pp.211-226. ⟨hal-00833522⟩
  • Boris Andreianov, Konstantin Brenner, Clément Cancès. Approximating the vanishing capillarity limit of two-phase flow in multi-dimensional heterogeneous porous medium. Journal of Applied Mathematics and Mechanics, Elsevier, 2014, 94 (7-8), pp.651-667. ⟨hal-00744359⟩
  • Konstantin Brenner, Clément Cancès, Danielle Hilhorst. Finite volume approximation for an immiscible two-phase flow in porous media with discontinuous capillary pressure. Computational Geosciences, Springer Verlag, 2013. ⟨hal-00675681v2⟩
  • Boris Andreianov, Clément Cancès. Vanishing capillarity solutions of Buckley-Leverett equation with gravity in two-rocks' medium. Computational Geosciences, Springer Verlag, 2013, 17 (3), pp.551-572. ⟨hal-00631584v2⟩
  • Clément Cancès, Nicolas Seguin. Error estimate for Godunov approximation of locally constrained conservation laws. SIAM Journal on Numerical Analysis, Society for Industrial and Applied Mathematics, 2012, 50 (6), pp.3036--3060. ⟨10.1137/110836912⟩. ⟨hal-00599581v2⟩
  • Clément Cancès, Michel Pierre. An existence result for multidimensional immiscible two-phase flows with discontinuous capillary pressure field. SIAM Journal on Mathematical Analysis, Society for Industrial and Applied Mathematics, 2012, 44 (2), pp.966--992. ⟨10.1137/11082943X⟩. ⟨hal-00518219v4⟩
  • Boris Andreianov, Clément Cancès. The Godunov scheme for scalar conservation laws with discontinuous bell-shaped flux functions. Applied Mathematics Letters, Elsevier, 2012, 25, pp.1844--1848. ⟨hal-00631586v2⟩
  • Clément Cancès, Thierry Gallouët. On the time continuity of entropy solutions. Journal of Evolution Equations, Springer Verlag, 2011, 11 (1), pp.43-55. ⟨hal-00349222v2⟩
  • Clément Cancès. Asymptotic behavior of two-phase flows in heterogeneous porous media for capillarity depending only on space. I. Convergence to the optimal entropy solution.. SIAM Journal on Mathematical Analysis, Society for Industrial and Applied Mathematics, 2010, 42 (2), pp.946-971. ⟨hal-00360297v4⟩
  • Clément Cancès. Asymptotic behavior of two-phase flows in heterogeneous porous media for capillarity depending only on space. II. Non-classical shocks to model oil-trapping. SIAM Journal on Mathematical Analysis, Society for Industrial and Applied Mathematics, 2010, 42 (2), pp.972-995. ⟨hal-00360295v7⟩
  • Clément Cancès. On the effects of discontinuous capillarities for immiscible two-phase flows in porous media made of several rock-types. Networks and Heterogeneous Media, AIMS-American Institute of Mathematical Sciences, 2010. ⟨hal-01713559⟩
  • Clément Cancès. Finite volume scheme for two-phase flows in heterogeneous porous media involving capillary pressure discontinuities. ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2009, 43 (5), pp.973 - 1001. ⟨hal-00360292v2⟩
  • Clément Cancès, Thierry Gallouët, Alessio Porretta. Two-phase flows involving capillary barriers in heterogeneous porous media. Interfaces and Free Boundaries, European Mathematical Society, 2009, 11 (2), pp. 239-258. ⟨10.4171/IFB/210⟩. ⟨hal-00464334⟩
  • Yoann Saillour, Nathalie Carion, Chloe Quelin, Pierre-Louis Leger, Nathalie Boddaert, et al.. LIS1-Related Isolated Lissencephaly: Spectrum of Mutations and Relationships With Malformation Severity. Archives of Neurology -Chigago-, American Medical Association, 2009, 66 (8), pp.1007-1015. ⟨10.1001/archneurol.2009.149⟩. ⟨hal-01104698⟩
  • Clément Cancès. Nonlinear Parabolic Equations with Spatial Discontinuities. Nonlinear Differential Equations and Applications, Springer Verlag, 2008, 15, pp.427-456. ⟨hal-01713524⟩

Conference papers9 documents

  • Clément Cancès, Flore Nabet. Energy stable discretization for two-phase porous media flows. Finite Volumes for Complex Applications IX, Jun 2020, Bergen, Norway. ⟨hal-02442233v2⟩
  • Sabrina Bassetto, Clément Cancès, Guillaume Enchéry, Quang Huy Tran. Robust Newton solver based on variable switch for a finite volume discretization of Richards equation. Finite Volumes for Complex Applications IX, Jun 2020, Bergen, Norway. ⟨hal-02464945⟩
  • Clément Cancès, Claire Chainais-Hillairet, Jürgen Fuhrmann, Benoît Gaudeul. On four numerical schemes for a unipolar degenerate drift-diffusion model. Finite Volumes for Complex Applications IX, Jun 2020, Bergen, Norway. ⟨hal-02461524⟩
  • Daniel Matthes, Clément Cancès, Flore Nabet. A degenerate Cahn‐Hilliard model as constrained Wasserstein gradient flow. GAMM annual meeting, International Association for Applied Mathematics and Mechanics, 2019, Vienna, Austria. ⟨10.1002/pamm.201900158⟩. ⟨hal-02377146⟩
  • Clément Cancès, Flore Nabet. Finite volume approximation of a degenerate immiscible two-phase flow model of {C}ahn-{H}illiard type. FVCA8 2017 - International Conference on Finite Volumes for Complex Applications VIII, 2017, Lille, France. pp.431-438. ⟨hal-01468795⟩
  • Clément Cancès, Didier Granjeon, Nicolas Peton, Quang Huy Tran, Sylvie Wolf. Numerical scheme for a stratigraphic model with erosion constraint and nonlinear gravity flux. FVCA 8 - 2017 - International Conference on Finite Volumes for Complex Applications VIII, Jun 2017, Lille, France. pp.327-335, ⟨10.1007/978-3-319-57394-6_35⟩. ⟨hal-01639681⟩
  • Clément Cancès, Claire Chainais-Hillairet, Stella Krell. A nonlinear Discrete Duality Finite Volume Scheme for convection-diffusion equations. FVCA8 2017 - International Conference on Finite Volumes for Complex Applications VIII, 2017, Lille, France. pp.439-447. ⟨hal-01468811⟩
  • Clément Cancès, K Brenner, D. Hilhorst. A Convergent Finite Volume Scheme for Two-Phase Flows in Porous Media with Discontinuous Capillary Pressure Field *. FVCA 6 - International Symposium Finite Volumes for Complex Applications , 2011, Prague, Czech Republic. ⟨hal-01713549⟩
  • Clément Cancès. Two-phase Flows Involving Discontinuities on the Capillary Pressure. FVCA5 - 5th International Symposium on Finite Volumes for Complex Applications , Jun 2008, Aussois, France. ⟨hal-01713566⟩

Books1 document

Directions of work or proceedings2 documents

  • Clément Cancès, Pascal Omnes. Finite Volumes for Complex Applications VIII - Methods and Theoretical Aspects: FVCA 8, Lille, France, June 2017 . C. Cancès and P. Omnes. France. 199, Springer International Publishing, 2017, Springer Proceedings in Mathematics & Statistics, FVCA 8, Lille, France, June 2017. ⟨hal-01639725⟩
  • Clément Cancès, Pascal Omnes. Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems: FVCA 8, Lille, France, June 2017. C. Cancès and P. Omnes. France. 200, Springer, 2017, Springer Proceedings in Mathematics & Statistics, 978-3-319-57393-9. ⟨hal-01639713⟩

Preprints, Working Papers, ...9 documents

  • Clément Cancès, David Maltese. A gravity current model with capillary trapping for oil migration in multilayer geological basins. 2020. ⟨hal-02272965v2⟩
  • Clément Cancès, Virginie Ehrlacher, Laurent Monasse. Finite Volumes for the Stefan-Maxwell Cross-Diffusion System. 2020. ⟨hal-02902672⟩
  • Clément Cancès, Jerome Droniou, Cindy Guichard, Gianmarco Manzini, Manuela Bastidas Olivares, et al.. Error estimates for the gradient discretisation of degenerate parabolic equation of porous medium type. 2020. ⟨hal-02540067⟩
  • Clément Cancès, Daniel Matthes. Construction of a two-phase flow with singular energy by gradient flow methods. 2020. ⟨hal-02510535⟩
  • Clément Cancès, Flore Nabet. Finite Volume approximation of a two-phase two fluxes degenerate Cahn-Hilliard model. 2020. ⟨hal-02561981v2⟩
  • Clément Cancès, Benoît Gaudeul. Entropy diminishing finite volume approximation of a cross-diffusion system. 2019. ⟨hal-02418908v2⟩
  • Clément Cancès, Cindy Guichard. Entropy-diminishing CVFE scheme for solving anisotropic degenerate diffusion equations. 2014. ⟨hal-00937595⟩
  • Clément Cancès, Mathieu Cathala, Christophe Le Potier. Monotone corrections for generic cell-centered Finite Volume approximations of anisotropic diffusion equations. 2013. ⟨hal-00643838v2⟩
  • Anne-Céline Boulanger, Clément Cancès, Hélène Mathis, Khaled Saleh, Nicolas Seguin. OSAMOAL: optimized simulations by adapted models using asymptotic limits. 2012. ⟨hal-00733865⟩

Theses1 document

  • Clément Cancès. Two-phase flows in heterogeneous porous media: modeling and analysis of the flows of the effects involved by the discontinuities of the capillary pressure.. Mathematics [math]. Université de Provence - Aix-Marseille I, 2008. English. ⟨tel-00335506v2⟩

Habilitation à diriger des recherches1 document

  • Clément Cancès. Analyse mathématique et numérique d'équations aux dérivées partielles issues de la mécanique des fluides : applications aux écoulements en milieux poreux. Equations aux dérivées partielles [math.AP]. Université Pierre et Marie Curie 2015. ⟨tel-01239700⟩