Number of documents


Journal articles19 documents

  • Clément Cancès, Frédéric Coquel, Edwige Godlewski, Hélène Mathis, Nicolas Seguin. Error analysis of a dynamic model adaptation procedure for nonlinear hyperbolic equations. Communications in Mathematical Sciences, International Press, 2016, 14 (1), pp.1-30. <hal-00852101>
  • Clément Cancès, Cindy Guichard. Convergence of a nonlinear entropy diminishing Control Volume Finite Element scheme for solving anisotropic degenerate parabolic equations. Mathematics of Computation, American Mathematical Society, 2016, 85 (298), pp.549-580. <hal-00955091>
  • Boris Andreianov, Clément Cancès. On interface transmission conditions for conservation laws with discontinuous flux of general shape. Journal of Hyperbolic Differential Equations, World Scientific Publishing, 2015, 12 (2), pp.343-384. <>. <10.1142/S0219891615500101>. <hal-00940756v2>
  • Clément Cancès, Thomas Gallouët, Léonard Monsaingeon. The gradient flow structure for incompressible immiscible two-phase flows in porous media. Comptes rendus de l'Académie des sciences. Série I, Mathématique, Elsevier, 2015, 353, pp.985-989. <hal-01122770>
  • Hélène Mathis, Clément Cancès, Edwige Godlewski, Nicolas Seguin. Dynamic model adaptation for multiscale simulation of hyperbolic systems with relaxation. Journal of Scientific Computing, Springer Verlag, 2015, 63 (3), pp.820-861. <hal-00782637v2>
  • Clément Cancès, Iuliu Sorin Pop, Martin Vohralík. An a posteriori error estimate for vertex-centered finite volume discretizations of immiscible incompressible two-phase flow. Mathematics of Computation, American Mathematical Society, 2014, 83 (285), pp.153-188. <hal-00623209v2>
  • Boris Andreianov, Clément Cancès. A phase-by-phase upstream scheme that converges to the vanishing capillarity solution for countercurrent two-phase flow in two-rocks media. Computational Geosciences, Springer Verlag, 2014, 18 (2), pp.211-226. <hal-00833522>
  • Boris Andreianov, Konstantin Brenner, Clément Cancès. Approximating the vanishing capillarity limit of two-phase flow in multi-dimensional heterogeneous porous medium. Journal of Applied Mathematics and Mechanics, Elsevier, 2014, 94 (7-8), pp.651-667. <hal-00744359>
  • Konstantin Brenner, Clément Cancès, Danielle Hilhorst. Finite volume approximation for an immiscible two-phase flow in porous media with discontinuous capillary pressure. Computational Geosciences, Springer Verlag, 2013. <hal-00675681v2>
  • Boris Andreianov, Clément Cancès. Vanishing capillarity solutions of Buckley-Leverett equation with gravity in two-rocks' medium. Computational Geosciences, Springer Verlag, 2013, 17 (3), pp.551-572. <hal-00631584v2>
  • Boris Andreianov, Clément Cancès. The Godunov scheme for scalar conservation laws with discontinuous bell-shaped flux functions. Applied Mathematics Letters, Elsevier, 2012, 25, pp.1844--1848. <hal-00631586v2>
  • Clément Cancès, Michel Pierre. An existence result for multidimensional immiscible two-phase flows with discontinuous capillary pressure field. SIAM Journal on Mathematical Analysis, Society for Industrial and Applied Mathematics, 2012, 44 (2), pp.966--992. <10.1137/11082943X>. <hal-00518219v4>
  • Clément Cancès, Nicolas Seguin. Error estimate for Godunov approximation of locally constrained conservation laws. SIAM Journal on Numerical Analysis, Society for Industrial and Applied Mathematics, 2012, 50 (6), pp.3036--3060. <10.1137/110836912>. <hal-00599581v2>
  • Clément Cancès, Thierry Gallouët. On the time continuity of entropy solutions. Journal of Evolution Equations, Springer Verlag, 2011, 11 (1), pp.43-55. <hal-00349222v2>
  • Clément Cancès. Asymptotic behavior of two-phase flows in heterogeneous porous media for capillarity depending only on space. II. Non-classical shocks to model oil-trapping. SIAM Journal on Mathematical Analysis, Society for Industrial and Applied Mathematics, 2010, 42 (2), pp.972-995. <hal-00360295v7>
  • Clément Cancès. Asymptotic behavior of two-phase flows in heterogeneous porous media for capillarity depending only on space. I. Convergence to the optimal entropy solution.. SIAM Journal on Mathematical Analysis, Society for Industrial and Applied Mathematics, 2010, 42 (2), pp.946-971. <hal-00360297v4>
  • Yoann Saillour, Nathalie Carion, Chloe Quelin, Pierre-Louis Leger, Nathalie Boddaert, et al.. LIS1-Related Isolated Lissencephaly Spectrum of Mutations and Relationships With Malformation Severity. Archives of Neurology -Chigago-, American Medical Association, 2009, 66 (8), pp.1007-1015. <10.1001/archneurol.2009.149>. <hal-01104698>
  • Clément Cancès. Finite volume scheme for two-phase flows in heterogeneous porous media involving capillary pressure discontinuities. ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2009, 43 (5), pp.973 - 1001. <hal-00360292v2>
  • Clément Cancès, Thierry Gallouët, Alessio Porretta. Two-phase flows involving capillary barriers in heterogeneous porous media. Interfaces and Free Boundaries, European Mathematical Society, 2009, 11 (2), pp. 239-258. <10.4171/IFB/210>. <hal-00464334>

Preprints, Working Papers, ...9 documents

  • Konstantin Brenner, Clément Cancès. Improving Newton's method performance by parametrization: the case of Richards equation. 2016. <hal-01342386>
  • Clément Cancès, Cindy Guichard. Numerical analysis of a robust free energy diminishing Finite Volume scheme for parabolic equations with gradient structure. to appear in Found. Comput. Math. 2016. <hal-01119735v4>
  • Clément Cancès, Thomas Gallouët, Leonard Monsaingeon. Incompressible immiscible multiphase flows in porous media: a variational approach. 2016. <hal-01345438>
  • Clément Cancès, Moustafa Ibrahim, Mazen Saad. Positive nonlinear CVFE scheme for degenerate anisotropic Keller-Segel system. 2015. <hal-01119210>
  • Boris Andreianov, Clément Cancès, Ayman Moussa. A nonlinear time compactness result and applications to discretization of degenerate parabolic-elliptic PDEs. 2015. <hal-01142499>
  • Clément Cancès, Hélène Mathis, Nicolas Seguin. Error estimate for time-explicit finite volume approximation of strong solutions to systems of conservation laws. 2015. <hal-00798287v3>
  • Clément Cancès, Cindy Guichard. Entropy-diminishing CVFE scheme for solving anisotropic degenerate diffusion equations. 2014. <hal-00937595>
  • Clément Cancès, Mathieu Cathala, Christophe Le Potier. Monotone corrections for generic cell-centered Finite Volume approximations of anisotropic diffusion equations. 2013. <hal-00643838v2>
  • Anne-Céline Boulanger, Clément Cancès, Hélène Mathis, Khaled Saleh, Nicolas Seguin. OSAMOAL: optimized simulations by adapted models using asymptotic limits. 2012. <hal-00733865>

Theses1 document

  • Clément Cancès. Two-phase flows in heterogeneous porous media: modeling and analysis of the flows of the effects involved by the discontinuities of the capillary pressure.. Mathematics [math]. Université de Provence - Aix-Marseille I, 2008. English. <tel-00335506v2>

Accreditation to supervise research1 document

  • Clément Cancès. Analyse mathématique et numérique d'équations aux dérivées partielles issues de la mécanique des fluides : applications aux écoulements en milieux poreux. Équations aux dérivées partielles [math.AP]. Université Pierre et Marie Curie 2015. <tel-01239700>