Nombre de documents

47

Le CV de Isaac Newton


Article dans une revue29 documents

  • Clément Cancès, Moustafa Ibrahim, Mazen Saad. Positive nonlinear CVFE scheme for degenerate anisotropic Keller-Segel system. SMAI Journal of Computational Mathematics, Société de Mathématiques Appliquées et Industrielles (SMAI), 2017, 3, pp.1--28. 〈hal-01119210〉
  • Konstantin Brenner, Clément Cancès. Improving Newton's method performance by parametrization: the case of Richards equation. SIAM Journal on Numerical Analysis, Society for Industrial and Applied Mathematics, 2017, 55 (4), pp.1760--1785. 〈hal-01342386〉
  • Clément Cancès, Claire Chainais-Hillairet, Stella Krell. Numerical analysis of a nonlinear free-energy diminishing Discrete Duality Finite Volume scheme for convection diffusion equations. Computational Methods in Applied Mathematics, De Gruyter, In press, 〈10.1515/cmam-2017-0043〉. 〈hal-01529143〉
  • Clément Cancès, Cindy Guichard. Numerical analysis of a robust free energy diminishing Finite Volume scheme for parabolic equations with gradient structure. Foundations of Computational Mathematics, Springer Verlag, 2017, 17 (6), pp.1525-1584. 〈hal-01119735v4〉
  • Ahmed Ait Hammou Oulhaj, Clément Cancès, Claire Chainais-Hillairet. Numerical analysis of a nonlinearly stable and positive Control Volume Finite Element scheme for Richards equation with anisotropy. ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, In press, 〈10.1051/m2an/2017012〉. 〈hal-01372954〉
  • Boris Andreianov, Clément Cancès, Ayman Moussa. A nonlinear time compactness result and applications to discretization of degenerate parabolic-elliptic PDEs. Journal of Functional Analysis, Elsevier, 2017, 273 (12), pp.3633-3670. 〈hal-01142499〉
  • Clément Cancès, Thomas Gallouët, Leonard Monsaingeon. Incompressible immiscible multiphase flows in porous media: a variational approach. Analysis & PDE, Mathematical Sciences Publishers, 2017, 10 (8), pp.1845-1876. 〈10.2140/apde.2017.10.1845〉. 〈hal-01345438v2〉
  • Clément Cancès, Hélène Mathis, Nicolas Seguin. Error estimate for time-explicit finite volume approximation of strong solutions to systems of conservation laws. SIAM Journal on Numerical Analysis, Society for Industrial and Applied Mathematics, 2016, 54 (2), pp.1263-1287. 〈hal-00798287v3〉
  • Clément Cancès, Frédéric Coquel, Edwige Godlewski, Hélène Mathis, Nicolas Seguin. Error analysis of a dynamic model adaptation procedure for nonlinear hyperbolic equations. Communications in Mathematical Sciences, International Press, 2016, 14 (1), pp.1-30. 〈hal-00852101〉
  • Clément Cancès, Cindy Guichard. Convergence of a nonlinear entropy diminishing Control Volume Finite Element scheme for solving anisotropic degenerate parabolic equations. Mathematics of Computation, American Mathematical Society, 2016, 85 (298), pp.549-580. 〈hal-00955091〉
  • Clément Cancès, Thomas Gallouët, Léonard Monsaingeon. The gradient flow structure for incompressible immiscible two-phase flows in porous media. Comptes rendus de l'Académie des sciences. Série I, Mathématique, Elsevier, 2015, 353, pp.985-989. 〈hal-01122770〉
  • Boris Andreianov, Clément Cancès. On interface transmission conditions for conservation laws with discontinuous flux of general shape. Journal of Hyperbolic Differential Equations, World Scientific Publishing, 2015, 12 (2), pp.343-384. 〈http://www.worldscientific.com/doi/abs/10.1142/S0219891615500101〉. 〈10.1142/S0219891615500101〉. 〈hal-00940756v2〉
  • Hélène Mathis, Clément Cancès, Edwige Godlewski, Nicolas Seguin. Dynamic model adaptation for multiscale simulation of hyperbolic systems with relaxation. Journal of Scientific Computing, Springer Verlag, 2015, 63 (3), pp.820-861. 〈hal-00782637v2〉
  • Boris Andreianov, Konstantin Brenner, Clément Cancès. Approximating the vanishing capillarity limit of two-phase flow in multi-dimensional heterogeneous porous medium. Journal of Applied Mathematics and Mechanics, Elsevier, 2014, 94 (7-8), pp.651-667. 〈hal-00744359〉
  • Boris Andreianov, Clément Cancès. A phase-by-phase upstream scheme that converges to the vanishing capillarity solution for countercurrent two-phase flow in two-rocks media. Computational Geosciences, Springer Verlag, 2014, 18 (2), pp.211-226. 〈hal-00833522〉
  • Clément Cancès, Iuliu Sorin Pop, Martin Vohralík. An a posteriori error estimate for vertex-centered finite volume discretizations of immiscible incompressible two-phase flow. Mathematics of Computation, American Mathematical Society, 2014, 83 (285), pp.153-188. 〈http://www.ams.org/journals/mcom/2014-83-285/S0025-5718-2013-02723-8/home.html〉. 〈hal-00623209v2〉
  • Boris Andreianov, Clément Cancès. Vanishing capillarity solutions of Buckley-Leverett equation with gravity in two-rocks' medium. Computational Geosciences, Springer Verlag, 2013, 17 (3), pp.551-572. 〈hal-00631584v2〉
  • Konstantin Brenner, Clément Cancès, Danielle Hilhorst. Finite volume approximation for an immiscible two-phase flow in porous media with discontinuous capillary pressure. Computational Geosciences, Springer Verlag, 2013. 〈hal-00675681v2〉
  • Boris Andreianov, Clément Cancès. The Godunov scheme for scalar conservation laws with discontinuous bell-shaped flux functions. Applied Mathematics Letters, Elsevier, 2012, 25, pp.1844--1848. 〈hal-00631586v2〉
  • Clément Cancès, Nicolas Seguin. Error estimate for Godunov approximation of locally constrained conservation laws. SIAM Journal on Numerical Analysis, Society for Industrial and Applied Mathematics, 2012, 50 (6), pp.3036--3060. 〈10.1137/110836912〉. 〈hal-00599581v2〉
  • Clément Cancès, Michel Pierre. An existence result for multidimensional immiscible two-phase flows with discontinuous capillary pressure field. SIAM Journal on Mathematical Analysis, Society for Industrial and Applied Mathematics, 2012, 44 (2), pp.966--992. 〈10.1137/11082943X〉. 〈hal-00518219v4〉
  • Clément Cancès, Thierry Gallouët. On the time continuity of entropy solutions. Journal of Evolution Equations, Springer Verlag, 2011, 11 (1), pp.43-55. 〈hal-00349222v2〉
  • Clément Cancès. Asymptotic behavior of two-phase flows in heterogeneous porous media for capillarity depending only on space. I. Convergence to the optimal entropy solution.. SIAM Journal on Mathematical Analysis, Society for Industrial and Applied Mathematics, 2010, 42 (2), pp.946-971. 〈hal-00360297v4〉
  • Clément Cancès. Asymptotic behavior of two-phase flows in heterogeneous porous media for capillarity depending only on space. II. Non-classical shocks to model oil-trapping. SIAM Journal on Mathematical Analysis, Society for Industrial and Applied Mathematics, 2010, 42 (2), pp.972-995. 〈hal-00360295v7〉
  • Clément Cancès. On the effects of discontinuous capillarities for immiscible two-phase flows in porous media made of several rock-types. Networks and Heterogeneous Media, AIMS-American Institute of Mathematical Sciences, 2010. 〈hal-01713559〉
  • Clément Cancès, Thierry Gallouët, Alessio Porretta. Two-phase flows involving capillary barriers in heterogeneous porous media. Interfaces and Free Boundaries, European Mathematical Society, 2009, 11 (2), pp. 239-258. 〈10.4171/IFB/210〉. 〈hal-00464334〉
  • Yoann Saillour, Nathalie Carion, Chloe Quelin, Pierre-Louis Leger, Nathalie Boddaert, et al.. LIS1-Related Isolated Lissencephaly Spectrum of Mutations and Relationships With Malformation Severity. Archives of Neurology -Chigago-, American Medical Association, 2009, 66 (8), pp.1007-1015. 〈10.1001/archneurol.2009.149〉. 〈hal-01104698〉
  • Clément Cancès. Finite volume scheme for two-phase flows in heterogeneous porous media involving capillary pressure discontinuities. ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2009, 43 (5), pp.973 - 1001. 〈hal-00360292v2〉
  • Clément Cancès. Nonlinear Parabolic Equations with Spatial Discontinuities. Nonlinear Differential Equations and Applications, Springer Verlag, 2008, 15, pp.427-456. 〈hal-01713524〉

Communication dans un congrès5 documents

  • Clément Cancès, Claire Chainais-Hillairet, Stella Krell. A nonlinear Discrete Duality Finite Volume Scheme for convection-diffusion equations. C. Cancès and P. Omnes. FVCA8 2017 - International Conference on Finite Volumes for Complex Applications VIII, 2017, Lille, France. Springer International Publishing, 199, pp.439-447, 2017, Springer Proceedings in Mathematics & Statistics. 〈hal-01468811〉
  • Clément Cancès, Didier Granjeon, Nicolas Peton, Quang Huy Tran, Sylvie Wolf. Numerical scheme for a stratigraphic model with erosion constraint and nonlinear gravity flux. FVCA 8 - 2017 - International Conference on Finite Volumes for Complex Applications VIII, Jun 2017, Lille, France. Springer, 200, pp.327-335, Proceedings in Mathematics & Statistics. 〈10.1007/978-3-319-57394-6_35〉. 〈hal-01639681〉
  • Clément Cancès, Flore Nabet. Finite volume approximation of a degenerate immiscible two-phase flowmodel of {C}ahn-{H}illiard type. FVCA8 2017 - International Conference on Finite Volumes for Complex Applications VIII, 2017, Lille, France. 199, pp.431-438, 2017, Springer Proceedings in Mathematics and Statistics. 〈hal-01468795〉
  • Clément Cancès, K Brenner, D. Hilhorst. A Convergent Finite Volume Scheme for Two-Phase Flows in Porous Media with Discontinuous Capillary Pressure Field *. FVCA 6 - International Symposium Finite Volumes for Complex Applications , 2011, Prague, Czech Republic. 〈hal-01713549〉
  • Clément Cancès. Two-phase Flows Involving Discontinuities on the Capillary Pressure. FVCA5 - 5th International Symposium on Finite Volumes for Complex Applications , Jun 2008, Aussois, France. 〈hal-01713566〉

Direction d'ouvrage, Proceedings, Dossier2 documents

  • Clément Cancès, Pascal Omnes. Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems: FVCA 8, Lille, France, June 2017. C. Cancès and P. Omnes. France. 200, Springer, 2017, Springer Proceedings in Mathematics & Statistics, 978-3-319-57393-9. 〈hal-01639713〉
  • Clément Cancès, Pascal Omnes. Finite Volumes for Complex Applications VIII - Methods and Theoretical Aspects: FVCA 8, Lille, France, June 2017. C. Cancès and P. Omnes. France. 199, Springer International Publishing, 2017, Springer Proceedings in Mathematics & Statistics, FVCA 8, Lille, France, June 2017. 〈hal-01639725〉

Pré-publication, Document de travail9 documents

  • Oriane Blondel, Clément Cancès, Makiko Sasada, Marielle Simon. Convergence of a Degenerate Microscopic Dynamics of the Porous Medium Equation. 2018. 〈hal-01710628v2〉
  • Ahmed Ait Hammou Oulhaj, Clément Cancès, Claire Chainais-Hillairet, Philippe Laurençot. Large time behavior of a two phase extension of the porous medium equation. 28 pages, 14 figures. 2018. 〈hal-01752759〉
  • Clément Cancès. Energy stable numerical methods for porous media flow type problems. 2018. 〈hal-01719502〉
  • Clément Cancès, Thomas Gallouët, Maxime Laborde, Léonard Monsaingeon. Simulation of multiphase porous media flows with minimizing movement and finite volume schemes. 2018. 〈hal-01700952〉
  • Clément Cancès, Claire Chainais-Hillairet, Anita Gerstenmayer, Ansgar Jüngel. Convergence of a Finite-Volume Scheme for a Degenerate Cross-Diffusion Model for Ion Transport. 2018. 〈hal-01695129〉
  • Clément Cancès, Daniel Matthes, Flore Nabet. A two-phase two-fluxes degenerate Cahn-Hilliard model as constrained Wasserstein gradient flow. 2017. 〈hal-01665338〉
  • Clément Cancès, Cindy Guichard. Entropy-diminishing CVFE scheme for solving anisotropic degenerate diffusion equations. 2014. 〈hal-00937595〉
  • Clément Cancès, Mathieu Cathala, Christophe Le Potier. Monotone corrections for generic cell-centered Finite Volume approximations of anisotropic diffusion equations. 2013. 〈hal-00643838v2〉
  • Anne-Céline Boulanger, Clément Cancès, Hélène Mathis, Khaled Saleh, Nicolas Seguin. OSAMOAL: optimized simulations by adapted models using asymptotic limits. 2012. 〈hal-00733865〉

Thèse1 document

  • Clément Cancès. Two-phase flows in heterogeneous porous media: modeling and analysis of the flows of the effects involved by the discontinuities of the capillary pressure.. Mathematics [math]. Université de Provence - Aix-Marseille I, 2008. English. 〈tel-00335506v2〉

HDR1 document

  • Clément Cancès. Analyse mathématique et numérique d'équations aux dérivées partielles issues de la mécanique des fluides : applications aux écoulements en milieux poreux. Equations aux dérivées partielles [math.AP]. Université Pierre et Marie Curie 2015. 〈tel-01239700〉