Skip to Main content

Co-authors

Researcher identifiers

Number of documents

71

Christophe Bichara


Current Position :

Senior scientist (Directeur de Recherches CNRS) at the Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), a joint research center hosted by CNRS and Aix-Marseille University.

Field of expertise:

  • Computational Materials science
  • Statistical Physics and Thermodynamics

Research activity:

2004-present: Carbon nanostructures; Growth mechanisms of carbon Nanotubes and Graphene. The complexity of the synthesis processes, and the nanometric scale of the objects studied required a joint experimental and computational approach. A dedicated tight binding model for carbon-transition metal alloys has been developed and implemented in a Monte Carlo code working in different statistical mechanical ensembles. A detailed analysis of the carbon metal interaction, and of the early stages of the nucleation of graphene and of single-walled carbon nanotubes has been performed. The latter emphasized the importance of the carbon solubility in the catalyst, and of the interfacial properties to control the different growth modes identified in transmission electron microscopy experiments. A statistical mechanical model has been developed recently to link the properties of the catalyst-nanotube interface, with the structure of the nanotubes grown from it. This enabled to produce structural maps and phase diagrams that will be used to design new catalysts promoting the formation of tubes with a better chiral selectivity.

1992-present: Study of non-crystalline materials: covalent liquids, tellurides and “Phase Change” Materials, porous systems, cements. The main focus has been to develop simple models and computer simulation techniques to link the chemical bonding and the electronic, structural and thermodynamic properties of p-bonded systems, highlighting the role of Peierls-like distortions and entropy contributions in these non-compact systems. I also led experimental structural investigations using X-Ray or neutron scattering. I recently used computer simulations to revisit the application of Maxwell rigidity theory to various classes of disordered materials, among which Phase Change materials and cements, in relation with their aging behaviour.

1982-91: Thermodynamics of alloys, metallurgy. My most important result is to have proposed a method for calculating and analysing the configurational density of states and the entropy of alloys, using a Monte Carlo method.

Career and Education:

  • Graduated in Chemical Engineering (Toulouse 1979)
  • Docteur d’Etat ès Sciences (PhD - Marseille 1988)
  • PostDoc at MPI für Eisenforschung (Düsseldorf, Germany, Humboldt Fellowship 1989-90)
  • CNRS researcher since October 1982
  • Head of the Theory and Computer Simulation group at CINaM (2007-11, and 2013-17)

 

Contact: bichara@cinam.univ-mrs.fr; +33 6 62 92 28 73; http://www.cinam.univ-mrs.fr/cinam/index.php



Journal articles60 documents

  • Lea Atmani, Pierre-Louis Valdenaire, Roland J.-M. Pellenq, Christophe Bichara, Henri van Damme, et al.. Simulating the Geological Fate of Terrestrial Organic Matter: Lignin vs Cellulose. Energy and Fuels, American Chemical Society, 2020, 34 (2), pp.1537-1547. ⟨10.1021/acs.energyfuels.9b03681⟩. ⟨hal-02491070⟩
  • Ki Kim, Young Lee, Ouafi Mouhoub, Rafael Martinez-Gordillo, Jaysen Nelayah, et al.. Quantitative insights into the growth mechanisms of nanopores in hexagonal boron nitride. Physical Review Materials, American Physical Society, 2020, 4 (1), ⟨10.1103/PhysRevMaterials.4.014005⟩. ⟨hal-03034741v2⟩
  • Georg Daniel Förster, Alice Castan, Annick Loiseau, Jaysen Nelayah, Damien Alloyeau, et al.. A deep learning approach for determining the chiral indices of carbon nanotubes from high-resolution transmission electron microscopy images. Carbon, 2020, 169, pp.465-474. ⟨10.1016/j.carbon.2020.06.086⟩. ⟨hal-02973879⟩
  • Yann Magnin, Emmanuel Villermaux, Hakim Amara, Christophe Bichara, Roland Pellenq. Morphology control of metallic nanoparticles supported on carbon substrates in catalytic conditions. Carbon, Elsevier, 2020, 159, pp.504-511. ⟨10.1016/j.carbon.2019.12.025⟩. ⟨hal-02426040⟩
  • Ying Tian, Nan Wei, Patrik Laiho, Saeed Ahmad, Yann Magnin, et al.. Cutting floating single-walled carbon nanotubes with a ‘CO2 blade’. Carbon, Elsevier, 2019, 143, pp.481-486. ⟨10.1016/j.carbon.2018.11.035⟩. ⟨hal-01975655⟩
  • Salomé Forel, Alice Castan, Hakim Amara, Ileana Florea, Frédéric Fossard, et al.. Tuning bimetallic catalysts for a selective growth of SWCNTs. Nanoscale, Royal Society of Chemistry, 2019, 11 (9), pp.4091-4100. ⟨10.1039/c8nr09589b⟩. ⟨hal-02110319⟩
  • Hua An, Akihito Kumamoto, Rong Xiang, Taiki Inoue, Keigo Otsuka, et al.. Atomic-scale structural identification and evolution of Co-W-C ternary SWCNT catalytic nanoparticles: High-resolution STEM imaging on SiO 2. Science Advances , American Association for the Advancement of Science (AAAS), 2019, 5 (5), eaat9459 p. 1-8. ⟨10.1126/sciadv.aat9459⟩. ⟨hal-02293135⟩
  • Maoshuai He, Yann Magnin, Hua Jiang, Hakim Amara, Esko I. Kauppinen, et al.. Growth Modes and Chiral Selectivity of Single-Walled Carbon Nanotubes. Nanoscale, Royal Society of Chemistry, In press, ⟨10.1039/C7NR09539B⟩. ⟨hal-01706361⟩
  • Rafael Martinez-Gordillo, Céline Varvenne, Hakim Amara, Christophe Bichara. Ni 2 C surface carbide to catalyze low-temperature graphene growth. Physical Review B: Condensed Matter and Materials Physics (1998-2015), American Physical Society, 2018, 97 (20), pp.1-9. ⟨10.1103/PhysRevB.97.205431⟩. ⟨hal-01878588⟩
  • Matthias Wuttig, Volker Deringer, Xavier Gonze, Christophe Bichara, Jean-Yves Raty. Incipient Metals: Functional Materials with a Unique Bonding Mechanism. Advanced Materials, Wiley-VCH Verlag, 2018, 30 (51), pp.1803777. ⟨hal-01975668⟩
  • Rahul Rao, Cary Pint, Ahmad Islam, Robert Weatherup, Stephan Hofmann, et al.. Carbon Nanotubes and Related Nanomaterials: Critical Advances and Challenges for Synthesis toward Mainstream Commercial Applications. ACS Nano, American Chemical Society, 2018, 12 (12), pp.11756-11784. ⟨hal-01975662⟩
  • Yann Magnin, Hakim Amara, François Ducastelle, Annick Loiseau, Christophe Bichara. Entropy driven stability of chiral single-walled carbon nanotubes. Science, American Association for the Advancement of Science (AAAS), 2018, 362, pp.212-215. ⟨10.1126/science.aat6228⟩. ⟨hal-01737797v2⟩
  • Maoshuai He, Yann Magnin, Hakim Amara, Hua Jiang, Hongzhi Cui, et al.. Linking growth mode to lengths of single-walled carbon nanotubes. Carbon, Elsevier, 2017, 113, pp.231-236. ⟨10.1016/j.carbon.2016.11.057⟩. ⟨hal-01432079⟩
  • Y. Oumellal, Y. Magnin, A. Martínez de Yuso, J. Aguiar Hualde, H. Amara, et al.. Magnetism as indirect tool for carbon content assessment in nickel nanoparticles. Journal of Applied Physics, American Institute of Physics, 2017, 122 (21), pp.213902. ⟨10.1063/1.5006138⟩. ⟨hal-02465035⟩
  • Juan-Manuel Aguiar-Hualde, Yann Magnin, Hakim Amara, Christophe Bichara. Probing the role of carbon solubility in transition metal catalyzing Single-Walled Carbon Nanotubes growth. Carbon, Elsevier, 2017, 120, pp.226-232. ⟨10.1016/j.carbon.2017.05.035⟩. ⟨hal-01473560⟩
  • Lea Atmani, Christophe Bichara, Roland J.-M. Pellenq, Henri van Damme, Adri van Duin, et al.. From cellulose to kerogen: molecular simulation of a geological process. Chemical Science , The Royal Society of Chemistry, 2017, 8 (12), pp.8325 - 8335. ⟨10.1039/C7SC03466K⟩. ⟨hal-01724050⟩
  • Hakim Amara, Christophe Bichara. Modeling the Growth of Single-Wall Carbon Nanotubes. Topics in current chemistry, Springer, 2017, 375 (3), ⟨10.1007/s41061-017-0141-8⟩. ⟨hal-01720676⟩
  • Mathieu Bauchy, Bu Wang, Mengyi Wang, Yingtian Yu, Mohammad Javad Abdolhosseini Qomi, et al.. Fracture toughness anomalies: Viewpoint of topological constraint theory. Acta Materialia, Elsevier, 2016, 121, pp.234-239. ⟨10.1016/j.actamat.2016.09.004⟩. ⟨hal-01454996⟩
  • Y. Magnin, A. Zapelli, H. Amara, F. Ducastelle, C. Bichara. Size Dependent Phase Diagrams of Nickel-Carbon Nanoparticles. Physical Review Letters, American Physical Society, 2015, 115, pp.205502. ⟨hal-01228658⟩
  • J.Y. Raty, W. Zhang, J. Luckas, C. Chen, R. Mazzarello, et al.. Aging mechanisms in amorphous phase-change materials. Nature Communications, Nature Publishing Group, 2015, 6, pp.7467. ⟨hal-01191863⟩
  • M. Bauchy, M.J.A. Qomi, C. Bichara, F.J. Ulm, R.J-M. Pellenq. Rigidity Transition in Materials: Hardness is Driven by Weak Atomic Constraints. Physical Review Letters, American Physical Society, 2015, 114, pp.125502. ⟨hal-01228667⟩
  • Matthieu Micoulaut, M.-V. Coulet, Andrea Piarristeguy, M. Johnson, Gabriel Cuello, et al.. Effect of concentration in Ge-Te liquids: A combined density functional and neutron scattering study. Physical Review B: Condensed Matter and Materials Physics (1998-2015), American Physical Society, 2014, 89, pp.174205. ⟨10.1103/PhysRevB.89.174205⟩. ⟨hal-01001836⟩
  • Y Magnin, G Förster, Franck Rabilloud, F. Calvo, A. Zappelli, et al.. Thermal expansion of free-standing graphene: benchmarking semi-empirical potentials. Journal of Physics: Condensed Matter, IOP Publishing, 2014, 26 (18), pp.185401. ⟨10.1088/0953-8984/26/18/185401⟩. ⟨hal-02042975⟩
  • Vincent Jourdain, Christophe Bichara. Current understanding of the growth of carbon nanotubes in catalytic chemical vapour deposition. Carbon, Elsevier, 2013, 58, pp.2-39. ⟨10.1016/j.carbon.2013.02.046⟩. ⟨hal-01067024⟩
  • S. Haghighatpanah, A. Mohsenzadeh, H. Amara, C. Bichara, K. Bolton. Computational studies of catalyst-free single walled carbon nanotube growth. Journal of Chemical Physics, American Institute of Physics, 2013, 139, pp.054308. ⟨hal-00914751⟩
  • J.A. Elliott, Y. Shibuta, H. Amara, C. Bichara, E.C. Neyts. Atomistic modelling of CVD synthesis of carbon nanotubes and graphene. Nanoscale, Royal Society of Chemistry, 2013, 5, pp.6662-6676. ⟨10.1039/c3nr01925j⟩. ⟨hal-00914752⟩
  • J.Y. Raty, P. Noe, G. Ghezzi, S. Maitrejean, C. Bichara, et al.. Vibrational properties and stabilization mechanism of the amorphous phase of doped GeTe. Physical Review B: Condensed Matter and Materials Physics (1998-2015), American Physical Society, 2013, 88 (1), pp.014203. ⟨10.1103/PhysRevB.88.014203⟩. ⟨hal-00914730⟩
  • M-F.C. Fiawoo, Anne-Marie Bonnot, H. Amara, C. Bichara, J. Thibault-Penisson, et al.. Evidence of Correlation between Catalyst Particles and the Single-Wall Carbon Nanotube Diameter: A First Step towards Chirality Control. Physical Review Letters, American Physical Society, 2012, 108 (19), pp.195503. ⟨10.1103/PhysRevLett.108.195503⟩. ⟨hal-01002327⟩
  • M.-F. C. Fiawoo, Anne Marie Bonnot, H Amara, C Bichara, J Thibault-Pénisson, et al.. Evidence of Correlation between Catalyst Particles and the Single-Wall Carbon Nanotube Diameter: A First Step towards Chirality Control. Physical Review Online Archive (PROLA), American Physical Society, 2012, 108 (19), pp.195503. ⟨10.1103/PhysRevLett.108.195503⟩. ⟨hal-01075303⟩
  • S. Haghighatpanah, A. Borjesson, C. Bichara, K. Bolton. Computational studies of graphene growth mechanisms. Physical Review B: Condensed Matter and Materials Physics (1998-2015), American Physical Society, 2012, 85 (20), pp.205448. ⟨hal-00724341⟩
  • J.Y. Raty, C. Bichara, R. Mazzarello, P. Rausch, P. Zalden, et al.. Comment on "New Structural Picture of the Ge2Sb2Te5 Phase-Change Alloy". Physical Review Letters, American Physical Society, 2012, 108 (23), pp.239601. ⟨hal-00724338⟩
  • M. Diarra, H. Amara, F. Ducastelle, C. Bichara. Carbon solubility in nickel nanoparticles: A grand canonical Monte Carlo study. physica status solidi (b), Wiley, 2012, 249 (12), pp.2629-2634. ⟨hal-00773486⟩
  • C. Bichara, P. Marsal, C. Mottet, R. Pellenq, F. Ribeiro, et al.. Structure and properties of nanoscale materials: theory and atomistic computer simulation. International Journal of Nanotechnology, Inderscience, 2012, 9 (3-7), pp.576-604. ⟨10.1504/IJNT.2012.045335⟩. ⟨hal-00697530⟩
  • M. Diarra, A. Zappelli, H. Amara, F. Ducastelle, C. Bichara. Importance of Carbon Solubility and Wetting Properties of Nickel Nanoparticles for Single Wall Nanotube Growth. Physical Review Letters, American Physical Society, 2012, 109, pp.185501. ⟨10.1103/PhysRevLett.109.185501⟩. ⟨hal-00773480⟩
  • M. Diarra, H. Amara, C. Bichara, F. Ducastelle. Role of defect healing on the chirality of single-wall carbon nanotubes. Physical Review B: Condensed Matter and Materials Physics (1998-2015), American Physical Society, 2012, 85 (24), pp.245446. ⟨10.1103/PhysRevB.85.245446⟩. ⟨hal-00773463⟩
  • J.H. Los, C. Bichara, R.-J.-M. Pellenq. Tight binding within the fourth moment approximation: Efficient implementation and application to liquid Ni droplet diffusion on graphene. Physical Review B: Condensed Matter and Materials Physics (1998-2015), American Physical Society, 2011, 84 (8), pp.085455. ⟨10.1103/PhysRevB.84.085455⟩. ⟨hal-00695996⟩
  • K. Bolton, A. Borjesson, W. Zhu, H. Amara, C. Bichara. Density Functional Theory and Tight Binding-Based Dynamical Studies of Carbon Metal Systems of Relevance to Carbon Nanotube Growth. Nano Research, Springer, 2010, 2, pp.774-782. ⟨hal-00523853⟩
  • J.Y. Raty, C. Otjacques, J.P. Gaspard, C. Bichara. Amorphous structure and electronic properties of the Ge1Sb2Te4 phase change material. Solid State Sciences, Elsevier, 2010, 12 (2), pp.193-198. ⟨hal-00475838⟩
  • M. Micoulaut, J.-Y. Raty, C. Otjacques, C. Bichara. Understanding amorphous phase-change materials from the viewpoint of Maxwell rigidity. Physical Review B: Condensed Matter and Materials Physics (1998-2015), American Physical Society, 2010, 81, pp.174206. ⟨10.1103/PhysRevB.81.174206⟩. ⟨hal-00523855⟩
  • P. Zalden, C. Bichara, J. van Eijk, C. Braun, W. Bensch, et al.. Atomic structure of amorphous and crystallized Ge15Sb85. Journal of Applied Physics, American Institute of Physics, 2010, 107 (10), pp.104312. ⟨10.1063/1.3380667⟩. ⟨hal-00523854⟩
  • S. Karoui, H. Amara, C. Bichara, F. Ducastelle. Nickel-assisted healing of defective graphene. ACS Nano, American Chemical Society, 2010, 4 (10), pp.6114-6120. ⟨10.1021/nn101822s⟩. ⟨hal-00566372⟩
  • A. Brjesson, W. Zhu, H. Amara, C. Bichara, K. Bolton. Computational Studies of Metal-Carbon Nanotube Interfaces for Regrowth and Electronic Transport. Nano Letters, American Chemical Society, 2009, 9 (3), pp.1117-1120. ⟨10.1021/nl8036245⟩. ⟨hal-00371301⟩
  • M. Moors, H. Amara, T. Visart de Bocarme, C. Bichara, F. Ducastelle, et al.. Early Stages in the Nucleation Process of Carbon Nanotubes. ACS Nano, American Chemical Society, 2009, 3 (3), pp.511-516. ⟨10.1021/nn800769w⟩. ⟨hal-00372419⟩
  • T. Roussel, C. Bichara, K.E. Gubbins, R.J.M. Pellenq. Hydrogen storage enhanced in Li-doped carbon replica of zeolites : a possible route to achieve fuel cell demand. Journal of Chemical Physics, American Institute of Physics, 2009, 130 (17), pp.174717. ⟨hal-00413543⟩
  • C. Otjacques, J.-Y. Raty, M.-V. Coulet, M. Johnson, H. Schober, et al.. Dynamics of the negative thermal expansion in tellurium based liquid alloys. Physical Review Letters, American Physical Society, 2009, 103, pp.245901. ⟨hal-00440724⟩
  • H. Amara, J.-M. Roussel, C. Bichara, J.-P. Gaspard, F. Ducastelle. Tight-binding potential for atomistic simulations of carbon interacting with transition metals: Application to the Ni-C system. Physical Review B: Condensed Matter and Materials Physics (1998-2015), American Physical Society, 2009, 79 (1), pp.014109. ⟨10.1103/PhysRevB.79.014109⟩. ⟨hal-00356771⟩
  • H. Amara, C. Bichara, F. Ducastelle. A Tight-Binding Grand Canonical Monte Carlo Study of the Catalytic Growth of Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, American Scientific Publishers, 2008, 8, pp.6099-6104. ⟨hal-00386875⟩
  • H. Amara, C. Bichara, F. Ducastelle. Interaction of carbon clusters with Ni(100) : application to the nucleation of carbon nanotubes. Surface Science, Elsevier, 2008, 602 (1), pp.77-83. ⟨hal-00269962⟩
  • H. Amara, C. Bichara, F. Ducastelle. Understanding the nucleation mechanisms of carbon nanotubes in catalytic chemical vapor deposition. Physical Review Letters, American Physical Society, 2008, 100 (5), pp.056105. ⟨hal-00303796⟩
  • C. Steimer, M.-V. Coulet, W. Welnic, H. Dieker, R. Detemple, et al.. Characteristic ordering in liquid phase change materials. Advanced Materials, Wiley-VCH Verlag, 2008, 20 (23), pp.4535-4540. ⟨hal-00386890⟩
  • C. Bichara, M. Johnson, J.P. Gaspard. Octahedral structure of liquid GeSb2Te4 alloy: First-principles molecular dynamics study. Physical Review B: Condensed Matter and Materials Physics (1998-2015), American Physical Society, 2007, 75, pp.060201. ⟨hal-00175327⟩
  • T. Roussel, A. Didion, R.J.M. Pellenq, R. Gadiou, C. Bichara, et al.. Experimental and atomistic simulation study of the structural and adsorption properties of Faujasite zeolite-templated nanostructured carbon materialst. Journal of Physical Chemistry C, American Chemical Society, 2007, 111, pp.15863. ⟨hal-00386857⟩
  • C. Bichara, M. Johnson, J.P. Gaspard. Octahedral structure of liquid GeSb2Te4 alloy : first-principles molecular dynamics study. Physical Review B: Condensed Matter and Materials Physics (1998-2015), American Physical Society, 2007, 75 (6), pp.art n°060201. ⟨hal-00143164⟩
  • T. Roussel, C. Mottet, C. Bichara. Local order in undercooled liquid metals: a tight binding molecular dynamics approach. Journal of Non-Crystalline Solids, Elsevier, 2007, 353, pp.3679-3683. ⟨hal-00303642⟩
  • T. Roussel, R.J.M. Pellenq, C. Bichara. Structure of narrow-diameter single-wall carbon nanotubes grown in AlPO4-5 zeolite. Physical Review B: Condensed Matter and Materials Physics (1998-2015), American Physical Society, 2007, 76, pp.235418. ⟨hal-00386854⟩
  • H. Amara, C. Bichara, F. Ducastelle. Formation of carbon nanostructures on nickel surfaces : a tight-binding grand canonical Monte Carlo study. Physical Review B: Condensed Matter and Materials Physics (1998-2015), American Physical Society, 2006, 73, n° 11, pp.113404. ⟨hal-00023674⟩
  • M.V. Coulet, D. Testemale, J.L. Hazemann, J.P. Gaspard, C. Bichara. Reverse Monte Carlo analysis of the local order in liquid Ge0.15Te0.85 alloys combining neutron scattering and X-ray absorption spectroscopy. Physical Review B: Condensed Matter and Materials Physics (1998-2015), American Physical Society, 2005, 72, pp.174209. ⟨hal-00070959⟩
  • C. Bichara, M. Johnson, J.Y. Raty. Temperature-induced density anomaly in Te-rich liquid germanium tellurides : p versus sp(3) bonding ?. Physical Review Letters, American Physical Society, 2005, 95, n° 26, pp.267801. ⟨hal-00017819⟩
  • T. Roussel, C. Bichara, R.J.M. Pellenq. Selenium and carbon nanostructures in the pores of AlPO4-5. Adsorption - Journal of the International Adsorption Society, Springer Verlag, 2005, 11, pp.709-714. ⟨hal-00015248⟩
  • Claire Bergman, C. Bichara, P. Chieux, J. Gaspard. ON THE ATOMIC STRUCTURE OF LIQUID GaAs. Journal de Physique Colloques, 1985, 46 (C8), pp.C8-97-C8-100. ⟨10.1051/jphyscol:1985811⟩. ⟨jpa-00225152⟩

Conference papers3 documents

  • H. Amara, C. Bichara, F. Ducastelle. Modélisation du mécanisme de germination-croissance des nanotubes de carbone. Colloque du GDR DFT ++, Mar 2007, Autrans, France. ⟨hal-00332649⟩
  • Christophe Bichara. Computer simulation approaches to the nucleation and growth of SWNTs. Summer School on Nanotubes, 3-15 Juillet, 2006, Cargese, France. ⟨hal-00105720⟩
  • T. Roussel, Fabrice Gaslain, R. Pellenq, Julien Parmentier, C. Bichara. Réplique carbonée de la zéolithe EMT : Expériences et Simulations. 22ème Réunion du Groupe Français des Zéolithes (GFZ), Mar 2006, La Rochelle, France. ⟨hal-00268913⟩

Books1 document

  • Jérôme Casas, C. Bichara. Programme de développement de la recherche agronomique au Tchad. Tome 2 : Le plan national à long terme (1993-2002). FAO, 136 p., 1993. ⟨hal-02848342⟩

Preprints, Working Papers, ...7 documents

  • Mamadou Diarra, Alexandre Zappelli, Hakim Amara, François Ducastelle, Christophe Bichara. Importance of carbon solubility and wetting properties of nickel nanoparticles for single wall nanotube growth. 2012. ⟨hal-00711169⟩
  • Mamadou Diarra, Hakim Amara, Christophe Bichara, François Ducastelle. Role of defect healing on the chirality of single-wall carbon nanotubes. 2012. ⟨hal-00688804⟩
  • Sondes Karoui, Hakim Amara, Christophe Bichara, François Ducastelle. Nickel assisted healing of defective graphene. 2010. ⟨hal-00512836⟩
  • Hakim Amara, Jean-Marc Roussel, Christophe Bichara, Jean-Pierre Gaspard, François Ducastelle. A tight-binding potential for atomistic simulations of carbon interacting with transition metals: Application to the Ni-C system. 2008. ⟨hal-00326956⟩
  • Hakim Amara, Christophe Bichara, François Ducastelle. Understanding the nucleation mechanisms of Carbon Nanotubes in catalytic Chemical Vapor Deposition.. 2007. ⟨hal-00194064⟩
  • Hakim Amara, Christophe Bichara, François Ducastelle. Interaction of carbon clusters with Ni(100) : \\ Application to the nucleation of carbon nanotubes. 2007. ⟨hal-00162972⟩
  • Hakim Amara, Christophe Bichara, François Ducastelle. A Tight-Binding Grand Canonical Monte Carlo Study of the Catalytic Growth of Carbon Nanotubes [Working paper]. 2007. ⟨hal-00141874⟩