Skip to Main content

Keywords

Researcher identifiers

Number of documents

52

AndroCV


Journal articles43 documents

  • Cornelis van Duijn, Andro Mikelic, Thomas Wick. Mathematical theory and simulations of thermoporoelasticity. Computer Methods in Applied Mechanics and Engineering, Elsevier, In press. ⟨hal-02429820⟩
  • Cornelis Johannes van Duijn, Andro Mikelic, Thomas Wick. A monolithic phase-field model of a fluid-driven fracture in a nonlinear poroelastic medium. Mathematics and Mechanics of Solids, SAGE Publications, 2019, 24 (5), pp.1530-1555. ⟨10.1177/1081286518801050⟩. ⟨hal-02072945⟩
  • Cornelis van Duijn, Andro Mikelic, Mary Wheeler, Thomas Wick. Thermoporoelasticity via homogenization I. Modeling and formal two-scale expansions. International Journal of Engineering Science, Elsevier, 2019, 138, ⟨10.1016/j.ijengsci.2019.02.005⟩. ⟨hal-01650194⟩
  • Andro Mikelic, M. Wheeler, T. Wick. Phase-field modeling through iterative splitting of hydraulic fractures in a poroelastic medium. GEM - International Journal on Geomathematics, Springer, 2019, 10 (1), ⟨10.1007/s13137-019-0113-y⟩. ⟨hal-02072936⟩
  • Sanghyun Lee, Andro Mikelic, Mary Wheeler, Thomas Wick. PHASE-FIELD MODELING OF TWO PHASE FLUID FILLED FRACTURES IN A POROELASTIC MEDIUM. Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal, Society for Industrial and Applied Mathematics, 2018, 16, pp.1542-1580. ⟨hal-01843787⟩
  • Thomas Carraro, Eduard Marusic-Paloka, Andro Mikelic. Effective pressure boundary condition for the filtration through porous medium via homogenization. Nonlinear Analysis: Real World Applications, Elsevier, 2018, 44, pp.149-172. ⟨10.1016/j.nonrwa.2018.04.008⟩. ⟨hal-01484775⟩
  • Anna Marciniak-Czochra, Andro Mikelic, Thomas Stiehl. Renormalization group second order approximation for singularly perturbed nonlinear ordinary differential equations. Mathematical Methods in the Applied Sciences, Wiley, 2018, 41, pp.5691--5710. ⟨hal-01795884⟩
  • Grégoire Allaire, Olivier Bernard, Jean-François Dufrêche, Andro Mikelic. Ion transport through deformable porous media:derivation of the macroscopic equations using upscaling. Computational and Applied Mathematics, Springer Verlag, 2017, 36, pp.1431-1462. ⟨10.1007/s40314-016-0321-0⟩. ⟨hal-01278241⟩
  • Andro Mikelic, Josip Tambaca. Derivation of a poroelastic flexural shell model. Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal, Society for Industrial and Applied Mathematics, 2016, 14 (1), pp.364-397. ⟨hal-01146535⟩
  • Thomas Carraro, Christian Goll, Anna Marciniak-Czochra, Andro Mikelić. Effective interface conditions for the forced infiltration of a viscous fluid into a porous medium using homogenization. Computer Methods in Applied Mechanics and Engineering, Elsevier, 2015, 292, pp.195--220. ⟨10.1016/j.cma.2014.10.050⟩. ⟨hal-00936627⟩
  • Andro Mikelic, M.F. Wheeler, Thomas Wick. A phase-field method for propagating fluid-filled fractures coupled to a surrounding porous medium. Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal, Society for Industrial and Applied Mathematics, 2015, 13 (1), pp.367-398. ⟨10.1137/140967118⟩. ⟨hal-01114228⟩
  • Anna Marciniak-Czochra, Andro Mikelic. A Rigorous Derivation of the Equations for the Clamped Biot-Kirchhoff-Love Poroelastic plate. Archive for Rational Mechanics and Analysis, Springer Verlag, 2015, 215, pp.1035--1062. ⟨10.1007/s00205-014-0805-2⟩. ⟨hal-00863444⟩
  • Andro Mikelic, M.F. Wheeler, Thomas Wick. Phase-field modeling of a fluid-driven fracture in a poroelastic medium. Computational Geosciences, Springer Verlag, 2015, 19 (6), pp.1171-1195. ⟨10.1007/s10596-015-9532-5⟩. ⟨hal-01202370⟩
  • N. Grosjean, D. Iliev, O. Iliev, R. Kirsch, Z. Lakdawala, et al.. Experimental and numerical study of the interaction between fluid flow and filtering media on the macroscopic scale. Separation and Purification Technology, Elsevier, 2015, 156, pp.22-27. ⟨10.1016/j.seppur.2015.09.010⟩. ⟨hal-02072986⟩
  • Angiolo Farina, Jonathan Bodin, Thierry Clopeau, Antonio Fasano, L. Meacci, et al.. Isothermal water flows in low porosity porous media in presence of vapor-liquid phase change. Nonlinear Analysis: Real World Applications, Elsevier, 2014, 15, pp.306-325. ⟨10.1016/j.nonrwa.2011.11.021⟩. ⟨hal-00864519⟩
  • Anna Marciniak-Czochra, Andro Mikelic. A nonlinear effective slip interface law for transport phenomena between a fracture flow and a porous medium. Discrete and Continuous Dynamical Systems - Series S, American Institute of Mathematical Sciences, 2014, 7, pp.1065-1077. ⟨10.3934/dcdss.2014.7.1065⟩. ⟨hal-00863443⟩
  • Andro Mikelic, M.F. Wheeler, Bin Wang. Numerical convergence study of iterative coupling for coupled flow and geomechanics. Computational Geosciences, Springer Verlag, 2014, 18, pp.325--341. ⟨10.1007/s10596-013-9393-8⟩. ⟨hal-00913519⟩
  • Grégoire Allaire, Robert Brizzi, Jean-François Dufrêche, Andro Mikelic, Andrey Piatnitski. Role of non-ideality for the ion transport in porous media: derivation of the macroscopic equations using upscaling. Physica D: Nonlinear Phenomena, Elsevier, 2014, 282, pp.39-60. ⟨10.1016/j.physd.2014.05.007⟩. ⟨hal-00863442⟩
  • Anna Marciniak-Czochra, Thomas Carraro, Goll Christian, Andro Mikelic. Pressure jump interface law for the Stokes-Darcy coupling: Confirmation by direct numerical simulations. Journal of Fluid Mechanics, Cambridge University Press (CUP), 2013, 732, pp.510-536. ⟨10.1017/jfm.2013.416⟩. ⟨hal-00863354⟩
  • Andro Mikelic, Sárka Necasová, Maria Neuss-Radu. Effective slip law for general viscous flows over an oscillating surface. Mathematical Methods in the Applied Sciences, Wiley, 2013, 36, p. 2086-2100. ⟨10.1002/mma.2923⟩. ⟨hal-00863979⟩
  • Grégoire Allaire, Jean-François Dufrêche, Andro Mikelic, Andrey Piatnitski. Asymptotic analysis of the Poisson-Boltzmann equation describing electrokinetics in porous media. Nonlinearity, IOP Publishing, 2013, 26, pp.881--910. ⟨10.1088/0951-7715/26/3/881⟩. ⟨hal-00863403⟩
  • Andro Mikelic, M.F. Wheeler. Convergence of iterative coupling for coupled flow and geomechanics. Comput Geosci, 2013, 17 (3), pp.455-462. ⟨hal-00863357⟩
  • Grégoire Allaire, Robert Brizzi, Jean-François Dufrêche, Andro Mikelic, Andrey Piatnitski. Ion transport in porous media: derivation of the macroscopic equations using up-scaling and properties of the effective coefficients. Computational Geosciences, Springer Verlag, 2013, 17 (3), pp.479-496. ⟨10.1007/s10596-013-9342-6⟩. ⟨hal-00863401⟩
  • Andro Mikelic, M.F. Wheeler. On the interface law between a deformable porous medium containing a viscous fluid and an elastic body. Mathematical Models and Methods in Applied Sciences, World Scientific Publishing, 2012, 22 (11), 1240031 (32 p.). ⟨10.1142/S0218202512500315⟩. ⟨hal-00863413⟩
  • Andro Mikelic, M.F. Wheeler. Theory of the dynamic Biot-Allard equations and their link to the quasi-static Biot system. Journal of Mathematical Physics, American Institute of Physics (AIP), 2012, 53 (12), pp.123702. ⟨10.1063/1.4764887⟩. ⟨hal-00863409⟩
  • Anna Marciniak-Czochra, Andro Mikelic. Effective pressure interface law for transport phenomena between an unconfined fluid and a porous medium using homogenization. Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal, Society for Industrial and Applied Mathematics, 2012, 10 (2), pp.285-305. ⟨10.1137/110838248⟩. ⟨hal-00863416⟩
  • Eduard Feireisl, Philippe Laurencot, Andro Mikelic. Global-in-time solutions for the isothermal Matovich-Pearson equations. Nonlinearity, IOP Publishing, 2011, 24, pp.277-292. ⟨10.1088/0951-7715/24/1/014⟩. ⟨hal-00488835⟩
  • Eduard Feireisl, Philippe Laurençot, Andro Mikelic. Global-in-time solutions for the isothermal Matovich-Pearson equations. Nonlinearity, IOP Publishing, 2011, 24, pp.277 -292. ⟨hal-00863441⟩
  • Andro Mikelic, C.J. van Duijn. Rigorous derivation of a hyperbolic model for Taylor dispersion. Mathematical Models and Methods in Applied Sciences, World Scientific Publishing, 2011, 21 (5), pp.1095-1120. ⟨hal-00863431⟩
  • Andro Mikelic, Suncica Canic, Oleg Boiarkine, Dmitry V. Kuzmin, G. Guidoboni. A positivity-preserving ALE finite element scheme for convection-diffusion equations in moving domains. Journal of Computational Physics, Elsevier, 2011, 230, pp.2896 -- 2914. ⟨hal-00863438⟩
  • Andro Mikelic, Willi Jaeger, Maria Neuss-Radu. Homogenization-limit of a model system for interaction of flow, chemical reactions and mechanics in cell tissues. SIAM Journal on Mathematical Analysis, Society for Industrial and Applied Mathematics, 2011, 43 (3), pp.1390--1435. ⟨hal-00863429⟩
  • Thierry Clopeau, Angiolo Farina, Antonio Fasano, Andro Mikelić. Asymptotic equations for the terminal phase of glass fiber drawing and their analysis. Nonlinear Analysis: Real World Applications, Elsevier, 2010, 11 (6), pp.4533-4545. ⟨hal-00659536⟩
  • Andro Mikelic, Thierry Clopeau, Antonio Fasano, Angiolo Farina. Asymptotic equations for the terminal phase of glass fiber drawing and their analysis. Nonlinear Analysis: Real World Applications, Elsevier, 2010, 11, pp.4533--4545. ⟨hal-00937158⟩
  • Andro Mikelic, M.F. Wheeler, M. Balhoff. Polynomial filtration laws for low Reynolds number flows through porous media. Transport in Porous Media, Springer Verlag, 2010, 81 (1), pp.35-60. ⟨hal-00937149⟩
  • Grégoire Allaire, Robert Brizzi, Andro Mikelic, Andrey L. Piatnitski. Two-scale expansion with drift approach to the Taylor dispersion for reactive transport through porous media. Chemical Engineering Science, Elsevier, 2010, 65, pp.2292-2300. ⟨hal-00937152⟩
  • Andro Mikelic. A global existence result for the equations describing unsaturated flow in porous media with dynamic capillary pressure. Journal of Differential Equations, Elsevier, 2010, 248, pp.1561-1577. ⟨hal-00937153⟩
  • Grégoire Allaire, Andro Mikelic, Andrey L. Piatnitski. Homogenization approach to the dispersion theory for reactive transport through porous media. SIAM Journal on Mathematical Analysis, Society for Industrial and Applied Mathematics, 2010, 42 (1), pp.125-144. ⟨hal-00937154⟩
  • Grégoire Allaire, Andro Mikelic, Andrey L. Piatnitski. Homogenization of the linearized ionic transport equations in rigid periodic porous media. Journal of Mathematical Physics, American Institute of Physics (AIP), 2010, 51, pp.123103. ⟨10.1063/1.3521555⟩. ⟨hal-00937156⟩
  • Catherine Choquet, Andro Mikelic. Rigorous upscaling of the reactive flow with finite kinetics and under dominant Peclet number. Continuum Mechanics and Thermodynamics, Springer Verlag, 2009, 21, pp.125-140. ⟨hal-00937074⟩
  • Andro Mikelic, Willi Jaeger. Modeling effective interface laws for transport phenomena between an unconfined fluid and a porous medium using homogenization. Transport in Porous Media, Springer Verlag, 2009, 78 (3), pp.489-508. ⟨hal-00937075⟩
  • Andro Mikelic, Willi Jaeger, Maria Neuss-Radu. Analysis of differential equations modelling the reactive flow through a deformable system of cells. Archive for Rational Mechanics and Analysis, Springer Verlag, 2009, 192 (2), pp.331-374. ⟨hal-00937067⟩
  • Andro Mikelic. An existence result for the equations describing a gas-liquid two-phase flow. Comptes Rendus Mécanique, Elsevier Masson, 2009, 337 (4), pp.226-232. ⟨hal-00937069⟩
  • Mohamed Belhadj, Eric Cancès, Jean-Frédéric Gerbeau, Andro Mikelić. Homogenization approach to filtration through a fibrous medium. Networks and Heterogeneous Media, AIMS-American Institute of Mathematical Sciences, 2007, 2 (3), pp.529-550. ⟨10.3934/nhm.2007.2.529⟩. ⟨hal-00701778⟩

Conference papers1 document

  • Andro Mikelic, Vincent Devigne, C.J. van Duijn. Taylor's Dispersion for Reactive Transport Model Using Asymptotic Methos. Fourth Conference on Applied Mathematics and Scientific Computing, Jun 2005, Brijuni, Croatia. ⟨emse-00411882⟩

Books1 document

  • Antonio Fasano, Angiolo Farina, Axel Klar, Robert Mattheij, Andro Mikelic, et al.. Mathematical Models in the Manufacturing of Glass. Springer Verlag, pp.227, 2011, Lecture Notes in Mathematics Vol. 2010, C.I.M.E. Foundation Subseries, 978-3-642-15966-4. ⟨hal-00864520⟩

Book sections3 documents

  • Andro Mikelic, Suncica Canic, T.-B. Kim, G. Guidoboni. Existence of a unique solution to a nonlinear moving-boundary problem of mixed type arising in modeling blood flow. A. Bressan, Gui-Qiang Chen, M. Lewicka, D. Wang. IMA Volume on Nonlinear Conservation Laws and Applications, Springer, pp.235 -256, 2011, IMA Volume on Nonlinear Conservation Laws and Applications. ⟨hal-00937171⟩
  • Andro Mikelic, A. Fasano, Angiolo Farina. Non-Isothermal Flow of Molten Glass: Mathematical Challenges and Industrial Questions. A. Fasano. Mathematical Models in the Manufacturing of Glass, Springer, pp.173-224, 2011, Lecture Notes in Mathematics Vol. 2010. ⟨hal-00937165⟩
  • Andro Mikelic. Rough boundaries and wall laws. E. Feireisl, P. Kaplicky J. Malek. Qualitative properties of solutions to partial differential equations, Matfyzpress, pp.103 - 134, 2009, Lecture notes of Necas Center for mathematical modeling. ⟨hal-00937163⟩

Directions of work or proceedings1 document

  • A. Fasano, Angiolo Farina, Axel Klar, Robert Mattheij, Andro Mikelic, et al.. Mathematical Models in the Manufacturing of Glass. Springer, pp.224, 2011, 978-3-642-15966-4. ⟨hal-00937170⟩

Preprints, Working Papers, ...2 documents

  • Cornelis van Duijn, Andro Mikelic. Mathematical Theory of Nonlinear Single-Phase Poroelasticity. 2019. ⟨hal-02144933⟩
  • Grégoire Allaire, Olivier Bernard, Jean-François Dufrêche, Andro Mikelic. Ion transport through deformable porous media: derivation of the macroscopic equations using upscaling. 2015. ⟨hal-01215457⟩

Reports1 document

  • Mohamed Belhadj, Eric Cancès, Jean-Frédéric Gerbeau, Andro Mikelic. Homogenization approach to filtration through a fibrous medium. [Research Report] RR-5277, INRIA. 2004. ⟨inria-00071254⟩